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Abstract—Recently growing attention has been
paid to recognizing text in natural images. Natural
image text OCR is far more complex than OCR
in scanned documents. Text in real world environ-
ments appears in arbitrary colors, font sizes and
typefaces, often affected by perspective distortion,
lighting effects, textures or occlusion. Currently
there is no dataset publicly available that covers
all aspects of natural image OCR. A comprehen-
sive well-annotated configurable dataset for optical
character recognition in natural images is defined
and created for the evaluation and comparison of
approaches tackling with natural-image text OCR.
Furthermore, current open source and commercial
OCR tools have been analyzed in various test sce-
narios using the proposed NEOCR dataset. Based
on the results further steps to be addressed by
the OCR community are concluded towards all-
embracing natural-image text recognition.

Index Terms—optical character recognition;
OCR; dataset; text detection; scene text
recognition; natural image text recognition; latin
characters

I. Introduction

Optical character recognition (OCR) for machine-
printed documents and handwriting has a long history
in computer science. For clean documents, current
state-of-the-art methods achieve over 99% character
recognition rates [1].

With the prevalence of digital cameras and mobile
phones, an ever-growing amount of digital images are
created. Many of these natural images contain text.
The recognition of text in natural images opens a field
of widespread applications, such as:

• help for visually impaired or blind (e.g., reading
text not transcribed in braille in [2]),

• mobile applications (e.g., translating pho-
tographed text for tourists and foreigners as

shown in [3, 4] or using the knfbReader [5] and
Word Lens [6]),

• object classification (e.g., multimodal fusion of
text and visual information as described in [7]),

• image annotation (e.g., for web search in [8])
• vision-based navigation and driving assistant

systems as suggested in [9].

Recently growing attention has been paid to recog-
nizing text in real world images, also referred to as
natural-image text OCR [4] or scene text recognition
(STR) [1]. Natural images are far more complex in
contrast to machine-printed documents. Problems
arise not only from background variations, but from
the depicted text too, which usually takes on a great
variety of appearances. In some cases even for humans
it is very hard to draw the line between text and
architectural forms. In addition to the survey of [2],
which compared the capturing devices (scanners and
digital cameras), we summarized main characteristics
of scanned document OCR and scene text recognition
in table I.

[10] identified image binarization and segmentation
as one of the crucial points for high OCR accuracy in
general. Because of the high variations of background,
text and surrounding objects in natural images, detect-
ing text and recognizing words becomes significantly
harder for real world scenes. For the development,
evaluation and comparison of techniques developed
specifically for natural-image text OCR, a publicly
available well annotated dataset is required.

All current datasets (see section II) annotate only
the words and bounding boxes in images. Also most
text appears in horizontal character arrangement,
while in natural scenes humans are often confronted
with text, where its characters are arranged vertically
or circularly (text following a curved, wavy or circular
line). Currently there is no well-annotated dataset
publicly available that covers all aspects distinguish-



Criteria Scanned documents Natural-image text

background homogeneous, usually white or light paper any color, even dark or textured
blurredness sharp (depending on scanner) possibly motion blur, blur because of

depth of field
camera position fixed, document lies on scanner’s glass

plate
variable, geometric and perspective distor-
tions almost always present

character
arrangement

clear horizontal lines horizontal and vertical lines, rounded,
wavy

colors mostly black text on white background high variability of colors, also light text
on dark background (e.g. illuminated text)
or only minor differences between tones

contrast good (black/dark text on white/light back-
ground)

depends on colors, shadows, lighting, illu-
mination, texture

font size limited number of font sizes high diversity in font sizes
font type
(diversity in document)

usually 1-2 (limited) types of fonts high diversity of fonts

font type
(in general)

machine-print, handwriting machine-print, handwriting, special (e.g.
textured such as light bulbs)

noise limited / negligible shadows, lighting, texture, flash light, re-
flections, objects in the image

number of lines usually several lines of text often only one single line or word
occlusion none both horizontally, vertically or arbitrary

possible
rotation
(line arrangement)

horizontally aligned text lines or rotated
by ±90 degrees

arbitrary rotations

surface text ”attached” to plain paper text freestanding (detached) or attached
to objects with arbitrary nonplaner sur-
faces, high variability of distortions

TABLE I
Differences between OCR on scanned documents and natural-image text.

ing scene text recognition from scanned document
OCR.

We propose the new NEOCR (Natural Environ-
ment OCR) dataset consisting of real world images
extensively enriched with additional metadata. Based
on this metadata several subdatasets can be created to
identify and overcome weaknesses of OCR approaches
on natural images. Main benefits of the proposed
dataset compared to other related datasets are:

• annotation of all text visible in images,
• additional distortion quadrangles for a more pre-

cise ground truth representation of text regions,
• rich metadata for simple configuration of sub-

datasets with special characteristics for more
detailed identification of shortcomings in OCR
approaches.

Based on the defined NEOCR dataset leading
current open source and commercial OCR applications
have been evaluated. Thanks to the additional meta-

data the recognition performance could be analyzed
for special characteristics of natural-image texts on
a much deeper level of detail than ever before. The
resulting conclusions give an extensive overview of
the current state and further steps for scene text
recognition.

The report is organized as follows: In the next
section we give a short overview of currently available
datasets for OCR in natural images and compare them
to our proposed NEOCR dataset. We describe the
construction of our new dataset and the annotated
metadata in section III. In section IV we give an
overview of distance functions for string comparison.
Experiments using open source and commercial OCR
software are presented in section V. We discuss the
results of the experiments in section VI and conclude
further steps for natural-image text recognition in
section VII.



Dataset #images #boxes avg. #char/box

ICDAR 2003 509 2263 6.15
Chars74K 312 2112 6.47
Microsoft Text DB 307 1729 10.76
Street View Text 350 904 6.83
NEOCR 659 5238 17.62

TABLE II
Comparison of natural-image text recognition datasets.

II. Datasets for
Natural-Image Text Recognition

Unfortunately, publicly available OCR datasets for
scene text recognition are very scarce. The ICDAR
2003 dataset [11] of [12, 13] is the most widely used in
the community. In the ICDAR 2003 Robust Reading
dataset 258 training and 251 test images have been
annotated with bounding boxes and the caption
of the contained text. Although the images in the
dataset show a considerable diversity in font types, the
images are mostly focused on the depicted text and
the dataset contains largely indoor scenes depicting
book covers or closeups of device names. The dataset
doesn’t contain any vertically or circularly arranged
text at all. The high diversity of natural images, such
as shadows, light changes, illumination, character
arrangement (e.g. vertical text) is not covered in the
dataset.

Recent progress in natural-image OCR resulted
in several new datasets. The Chars74K dataset [14]
introduced by [15] focuses on the recognition of
Latin and Kannada characters in natural images. The
dataset contains 1922 images mostly depicting sign
boards, hoardings and advertisements from a frontal
viewpoint. About 900 images have been annotated
with bounding boxes for characters and words, of
which only 312 images contain latin word annotations.
Unfortunately, not all words visible in the images
have been annotated and images with occlusion, low
resolution or noise have been excluded.

[4] proposed the Street View Text dataset [16],
which is based on images harvested from Google
Street View [17]. The dataset contains 350 outdoor
images depicting mostly business signs. At total 904
rectangular textfields were annotated. Unfortunately,
bounding boxes are parallel to the axes, which is
insufficient for marking text in natural scenes. Another

deficit is that not all words depicted in the image have
been annotated.

In [18] a new stroke width based method was
introduced for text recognition in natural scenes.
The algorithm was evaluated using the ICDAR 2003
dataset and additionally on a newly proposed dataset
(Microsoft Text DB [19]). The 307 annotated images
cover the characteristics of natural images more com-
prehensively as in the ICDAR dataset. Unfortunately,
not all text visible in the images has been annotated
and the bounding boxes are parallel to the axes.

Additionally some special datasets of license plates,
book covers or digits have been used in different
publications. Still sorely missed is a well-annotated
dataset covering the aspects of natural images com-
prehensively, which could be applied for comparing
different approaches and identifying gaps in natural-
image text recognition.

Ground truth annotations in the related datasets
presented above are limited to bounding box co-
ordinates and text transcriptions. Therefore, our
comparison of current datasets is limited to statistics
on the number of annotated images, the number of
annotated textfields (bounding boxes) and the average
number of characters per textfield. The Chars74K
dataset is a special case, because it contains word
annotations and redundantly its characters are also
marked. For this reason, only annotated words with a
length bigger than 1 and consisting of latin characters
or digits only were included in the statistics in table II.

Compared to other datasets dedicated to natural-
image OCR the NEOCR dataset contains much more
annotated bounding boxes. Because not only words,
but also phrases have been annotated in the NEOCR
dataset, the average text length per bounding box
is also higher. None of the related datasets includes
additional metadata information for the annotated
bounding boxes. NEOCR surpasses all other natural-



image OCR datasets with its rich additional metadata,
which enables more detailed evaluations and more spe-
cific conclusions on weaknesses of OCR approaches.

III. The NEOCR Dataset

A comprehensive dataset with rich annotation for
OCR in natural images is introduced. The images
cover a broad range of characteristics that distinguish
real world scenes from scanned documents. Example
images from the dataset are shown in figure 1.

The dataset contains a total of 659 images with
5238 bounding boxes (textfields). Images were cap-
tured by the authors and members of the lab using
various digital cameras with diverse camera settings
to achieve a natural variation of image characteristics.
Afterwards, images containing text were hand-selected
with particular attention to achieving a high diversity
in depicted text regions. The first release of the
NEOCR dataset covers the dimensions discussed in
this section each by at least 100 textfields. Figure 2
shows examples from the NEOCR dataset for typical
problems in natural-image OCR.

Based on the rich annotation of optical, geometrical
and typographical characteristics of bounding boxes,
the NEOCR dataset can also be tailored into spe-
cific datasets to test new approaches for specialized
scenarios. Additionally to bounding boxes, distortion
quadrangles were marked in the images too for a more
accurate ground truth annotation of text regions and

Fig. 1. Example images from the NEOCR dataset. Note that
the dataset also includes images with text in different languages,
text with vertical character arrangement, light text on dark
and dark text on light background, occlusion, normal and poor
contrast.

automatic derivation of rotation, scaling, translation
and shearing values. These distortion quadrangles also
enable a more precise representation of slanted text
areas close to each other, which usually overlap when
using bounding boxes only with their sides parallel
to the axes.

For image annotation, the web-based annotation
tool of [20] for the LabelMe dataset [21] was used.
Due to the simple browser interface of LabelMe
the NEOCR dataset can be extended continuously.
Annotations are provided in XML for each image,
separately describing global image features, bounding
boxes of text and its special characteristics. The XML-
schema of LabelMe has been adapted and extended
by tags for additional metadata. The annotation
metadata is discussed in more detail in the following
sections.

A. Global Image Metadata

General image metadata contains the filename,
folder, source information and image properties. For
each whole image its width, height, depth, brightness
and contrast are annotated. Brightness values are
obtained by extracting the luma channel (Y-channel)
of the images and computing the mean value. The
standard deviation of the luma channel is annotated
as the contrast value. Both brightness and contrast
values are obtained using ImageMagick [22].

B. Textfield Metadata

All words and coherent text passages appearing
in the images of the NEOCR dataset are marked by
bounding boxes. Coherent text passages are several
lines of text in same font size and typeface, color,
texture and background (e.g., as they usually appear
on memorial plaques or signs). All bounding boxes
are rectangular and parallel to the axes. Additionally
annotated distortion quadrangles inside the bounding
boxes give a more accurate representation of text
regions. The metadata is enriched by optical, geomet-
rical and typographical characteristics.

1) Optical Characteristics: Optical characteristics
contain information about the blurredness, brightness,
contrast, inversion (dark text on light background or
vice versa), noise and texture of a textfield.

a) Texture: Texture is very hard to measure
automatically, because texture differences can form
the text and text itself can be a texture too. Following
three categories have been defined:



(a) emboss, engrave (b) lens blur

(c) perspective distortion (d) crop, rotate, occlusion, circular

(e) textured background (f) textured text

Fig. 2. Example images from the NEOCR dataset depicting typical characteristics of natural-image text recognition.

• low: single color text with single color back-
ground,

• mid: multi-colored text or multi-color back-
ground,

• high: multi-colored text and multi-colored back-
ground, or text without a continuous surface (e.g.,
luminous advertising built from light bulbs).

b) Brightness and contrast: Brightness and con-
trast values for bounding boxes are obtained the same



way as for the whole image (see section III-A). As an
attribute of the contrast characteristic we additionally
annotate whether dark text is represented on light
background or vice versa (inverted).

c) Resolution: In contrast to 1000dpi and more
in high resolution scanners, images taken by digital
cameras only achieve resolutions up to 300dpi. The
lower the focal length, the bigger the area captured by
the lens. Depending on the pixel density and the size of
the camera sensor small text can turn unrecognizable.
As a measure we define text resolution as the number
of pixels in the bounding box divided by the number
of annotated characters.

d) Noise: Image noise can originate from the
noise sensitivity of camera sensors or from image com-
pression artifacts (e.g., in JPEG images). Usually, the
higher the ISO values or the higher the compression
rates, the bigger the noise in the images. Because noise
and texture are difficult to distinguish we classify the
bounding boxes into low, mid and high noise judged
by eye.

e) Blurredness: Image blur can be divided into
lens and motion blur. Lens blur can result from depth
of field effects when using large aperture depending
on the focal length and focus point. Similar blurring
effects can result from image compression too. Motion
blur can originate either from moving objects in the
scene or camera shakes by the photographer. [23]
and [24] give overviews on different approaches for
measuring image blur. As a measure for blurredness
we annotated the kurtosis value to the bounding
boxes. First edges are detected using a Laplacian-
of-Gaussian Filter (LoG). Afterwards the edge image
is Fourier transformed and the steepness (kurtosis)
of the spectral analysis is computed. The higher the
kurtosis, the more blurred the image.

2) Geometrical Characteristics: Character arrange-
ment, distortion, occlusion and rotation are subsumed
under geometrical characteristics.

a) Distortion: Because the camera sensor plane
is almost never parallel to the photographed text’s
plane, text in natural images usually appears per-
spectively distorted. Several methods can be applied
to represent distortion. In our annotations we used
8 floating point values as described in [25]. The 8
values can be represented as a matrix, where sx and
sy describes scaling, rx and ry rotation, tx and ty
translation, and px and py shearing:

 sx rx px
ry sy py
tx ty 1

 (1)

The equations in [25] are defined for unit length
bounding boxes only. We adapted the equations for
arbitrary sized bounding boxes. The derivation of
the equations is discussed in detail in appendix A.
Based on the matrix and the original coordinates of
the bounding box, the coordinates of the distorted
quadrangle can be computed using the following two
equations:

x′ =
sxx+ ryy + tx
pxx+ pyy + 1

(2)

y′ =
rxx+ syy + ty
pxx+ pyy + 1

(3)

b) Rotation: Because of arbitrary camera direc-
tions and free positioning in the real world, text
can appear diversely rotated in natural images. The
rotation values are given in degrees as the offset
measured from the horizontal axis given by the image
itself. The text rotation is computed automatically
based on the distortion parameters. Further details
and equations are discussed in appendix B.

c) Arrangement: In natural images characters of
a text can be arranged vertically too (e.g., some hotel
signs). Also, some text follows curved, wavy or circular
baselines. In the annotations we distinguish between
horizontally, vertically and circularly arranged text.
Single characters were categorized as horizontally
arranged.

d) Occlusion: Depending on the chosen image
detail by the photographer or objects present in
the image, text can appear occluded in natural
images. Because missing characters (vertical cover)
and horizontal occlusion need to be treated separately
by OCR methods, we distinguish between both in our
annotations. The amount of cover is annotated as
percentage value.

3) Typographical Characteristics: Typographical
characteristics contain information about font type-
faces and languages.

a) Typefaces: Typefaces of bounding boxes are
categorized into standard (print), handwriting and
special categories. The annotated text is case-sensitive,
the font size can be derived from the proportion of
the resolution value and the size of the bounding
box. Font thickness is not included in the annotation
metadata.



b) Language: Languages can be a very important
information when using vocabularies for correcting
errors in recognized text. Because the images were
taken in several countries, 15 different languages are
present in the NEOCR dataset, though the visible text
is limited to latin characters only. In some cases, text
cannot be clearly assigned to any language. For these
special cases we introduced categories for numbers,
abbreviations, persons and business names.

C. Summary

Figure 3 shows statistics on selected dimensions
for the NEOCR dataset. The graphs prove the high
diversity of the images in the dataset. The more
accurate and rich annotation allows more detailed
inspection and comparison of approaches for natural-
image text OCR.

Figure 4 shows a screenshot of the adapted La-
belMe annotation tool with an example image. The
corresponding annotation for the example image and
the range of values for each metadata dimension are
listed in table III. Further details for the annotations,
the XML-schema and the dataset itself can be found
on the NEOCR dataset website [26]. Some OCR
algorithms rely on training data. For these approaches
a disjoint split of the images in training and testing
data is provided on the NEOCR dataset website.

Fig. 4. Example image from the NEOCR dataset. The
annotated metadata is shown in table III.

IV. Distance Functions for
String Comparison

In the evaluation based on the NEOCR dataset
in section V the manually annotated ground truth
is compared to the text recognized by OCR tools.

When applying OCR on natural images, in most cases
regions without any characters are detected as text
too. Also single characters inside a word are sometimes
misclassified by OCR methods.

Several distance functions and algorithms have been
proposed to compare sequences. [27] and [28] give
comprehensive overviews on the topic of sequence
and string comparison. In this section the focus
is limited to the most popular string comparison
distance functions.

A. Definitions

We define d(xn, ym) as the distance between strings
xn and ym, which is the minimal cost of operations
transforming string xn into ym. ∅ is the empty
string and n is the length of string xn. Transforming
operations are defined as δ(a, b) = t, where a and b
are different characters and t is the assigned cost
for the given transformation operation. From the
mathematical perspective distance functions need to
satisfy the four metric axioms:

• nonnegative property: d(xn, ym) ≥ 0
• zero property: d(xn, ym) = 0

if and only if xn = ym
• triangle inequality:
d(xn, ym) + d(ym, zo) ≥ d(xn, zo)

• symmetry: d(xn, ym) = d(ym, xn)

The first three properties are always valid for all
strings xn and ym. If the symmetry holds for trans-
forming operations too (δ(a, b) = δ(b, a)), then the
space of strings forms a metric space.

For strings, transforming operations are limited in
[27] and [28] to following:

• insertion: δ(∅, a), inserting character a
• deletion: δ(a, ∅), removing character a
• substitution (replacement): δ(a, b) for a 6= b,

replacing character a by b
• transposition (swap): δ(ab, ba) for a 6= b, swap-

ping adjacent characters a and b

[27] also mentions compression of two or more char-
acters into one character, and its reverse operation,
expansion as transforming operations for sequence
comparison. These are less relevant for string com-
parison and therefore they are not considered here.

B. Distance Functions

In this section the most popular string comparison
distance functions are introduced in detail based on
the notation presented in section IV-A.
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Fig. 3. Brightness, contrast, rotation, occlusion, font and language statistics proving the diversity of the proposed NEOCR
dataset. Graphs 3(a) and 3(b) also show the usual value of a scanned text document taken from a computer science book. The
number of images refers to the number of textfields marked by bounding boxes.



Category Datatype Values range Example value

texture string low, mid, high mid
brightness float [0;255] 164.493
contrast float [0;123] 36.6992
inversion boolean true, false false
resolution float [1;1000000] 49810
noise string low, mid, high low
blurredness float [1;100000] 231.787
distortion 8 float values sx: [-1;5], sy: [-1;1.5],

rx: [-15;22], ry: [-23;4],
tx: [0;1505], ty: [0;1419],
px: [-0.03;0.07], py: [-0.02;0.02]

sx: 0.92, sy:0.67,
rx: -0.04, ry: 0,
tx: 0, ty: 92,
px:-3.28-05, py: 0

rotation float [0;360] 2.00934289847729
character arrangement string horizontal, vertical, circular horizontal
occlusion integer [0;100] 5
occlusion direction string horizontal, vertical vertical
typeface string standard, special, handwriting standard
language string german, english, spanish, hungarian,

italian, latin, french, belgian, russian,
turkish, greek, swedish, czech, por-
toguese, numbers, roman date, abbre-
viation, company, person, unknown

german

difficult boolean true, false false

TABLE III
Range of values for each metadata dimension and annotations for the example image depicted in figure 4.

1) Hamming Distance: The simplest distance func-
tion for string comparison is the exact match or
Hamming distance [29]. It is considered as string
matching with k mismatches, where each mismatch
is assigned with cost 1. For computing the Hamming
distance, simply the number of positions is counted
in which the corresponding characters of the strings
are different:

d(xn, ym) =
∑
xi 6=yi

1 (4)

, where xi is the character at position i in string xn.
2) Levenshtein Distance: The Levenshtein [30] or

edit distance is the most common string comparison
method. It is considered as string matching with k
differences, allowing insertions, deletions and replace-
ments. If all transformation operations are assigned
with cost 1, then the Levenshtein distance can be also
considered as the minimum number of transformation
operations required to change string xn into ym.
Formally the Levenshtein distance is defined as:

d(∅, ∅) = 0 (5)

d(xn, ∅) = d(∅, xn) = n (6)

d(xn, ym) = min


d(xn−1, ym−1) + 0 if xi = yj ,

d(xn−1, ym−1) + 1 (replacement),

d(xn, ym−1) + 1 (insertion),

d(xn−1, ym) + 1 (deletion)
(7)

, where xn−1 resembles the string xn shortened by 1
character.

The Damerau-Levenshtein distance [31] extends
the Levenshtein distance by adding the transposition
transformation operation with cost c. For this, equa-
tion 7 needs to be adapted as follows:

d(xn, ym) = min



d(xn−1, ym−1) + 0 if xi = yj ,

d(xn−1, ym−1) + 1 (replacement),

d(xn, ym−1) + 1 (insertion),

d(xn−1, ym) + 1 (deletion),

d(xn−2, ym−2) + c (swap) if

xi = yi−1 or xi−1 = yi.
(8)



3) Longest Common Substring Distance: The
longest common substring as defined in [32] and
[33] is the longest pairing of characters in strings
xn and ym, so that the characters of the substring
appear in the same order in the strings. The length
of the longest common substring can be computed
by following recursive definition:

lcs(∅, ∅) = lcs(xn, ∅) = lcs(∅, xn) = 0 (9)

lcs(xn, ym) =


lcs(xn−1, ym−1) + 1 if xi = yj ,

max(lcs(xn−1, ym), lcs(xn, ym−1))

if xi 6= yj
(10)

, where deletions can only be made at the beginning
or the end of the compared strings. The distance is
defined in [34] as the number of unpaired characters,
formally:

d(xn, ym) = n+m− 2lcs(xn, ym) (11)

, for strings xn and ym with length n and m re-
spectively. Efficient algorithms for computing longest
common substrings are discussed in [35], [34] and [36].

4) Jaro Distance: The Jaro distance is defined
in [37] and [38] as the weighted sum of common
characters and the number of transpositions, formally:

d(xn, ym) =

(
wxc

n
+
wyc

m
+
wτ (c− τ)

c

)
(12)

, where wx and wy are weights associated with the
strings xn and ym and wτ is the weight associated
with transpositions. Two characters are considered
in common only if they are no further apart than
c = max(n,m)

2 − 1. The number of transpositions τ
is computed by comparing the common characters
positionwise. The number of mismatched characters
divided by two yields the number of transpositions.

The Jaro-Winkler distance modifies the basic Jaro
distance according to whether the first few characters
in the strings xn and ym are the same. Formally the
Jaro-Winkler distance is defined in [38] as:

d(xn, ym) = dJ(xn, ym) +  ·0.1(1−dJ(xn, ym)) (13)

, where dJ(xn, ym) is the Jaro distance between
strings xn and ym (see equation 12) and  is the length
of the common prefix at the start of the strings up to
a maximum of 4. For this distance function [38] uses

1/3 for the weights wx, wy and wτ , which we applied
in our experiments too.

C. Normalized String Similarity

The Hamming, Levenshtein, Damerau-Levenshtein
and Longest Common Substring distance functions
count the number of character operations. Because
the distance depends on the string length too –
comparing two long strings naturally yields a higher
distance value on average due to the higher number
of compared characters –, the distance has to be
normalized. Therefore, we chose to divide the resulting
distance by the length of the longer string, which leads
to distance values between 0 and 1.

Similarity measures can be easily derived from
distance functions by subtracting the normalized
distance from 1. As a result, we propose the following
normalized similarity function for comparing the
recognition accuracy of different OCR approaches:

s(xn, ym) = 1− d(xn, ym)

max(n,m)
. (14)

D. Summary

In this section we gave an overview of the most
common and popular distance functions for string
comparison.

Because OCR tools are usually applied on scanned
text documents, they are trained to recognize text
with horizontal character arrangement. Horizontally
arranged strings recognized by OCR from natural
images contain in most cases the characters in cor-
rect order, so usually there are no transpositions
required. Though, some characters can be missing
or misclassified as other characters and also some
characters might be recognized which don’t exist in
the image. Because of these properties the longest
common substring and the classic Levenshtein dis-
tance measures are most applicable for comparing
horizontally arranged OCR text from natural images
with the ground truth annotation.

In contrast to scanned documents, natural images
contain text with vertical or circular character ar-
rangement too. Because OCR tools in general don’t
find any correspondences between the letters of a
vertically or circularly arranged word, it is possible
that characters are recognized in mixed order. For the
comparison of these types of text in natural images
transposition operations might be useful. Therefore
the Damerau-Levenshtein and Jaro distances should



be a better choice for comparing the recognized text
with the ground truth.

In the following section the distance functions are
applied for comparing the strings recognized by OCR
applications and the annotated ground truth in the
NEOCR dataset.

V. Evaluation of OCR Applications

To form an impression what the current state
of natural-image text recognition is, popular open
source and leading commercial OCR applications have
been compared based on the NEOCR dataset. Due
to differences to scanned documents, first optimal
configurations were identified for natural images for
each OCR tool based on the 9 sample images depicted
in figure 1. OCR tools that couldn’t be configured
to recognize any useful text have been discarded.
Altogether 9 of 23 inspected OCR tools were left
for the test scenarios below. For all test scenarios the
optimal configuration determined manually for the 9
sample images was applied.

Because we don’t want to compare the tools them-
selves but rather get an overall impression of the
current state of OCR in natural images, the names
of the tools have been made anonymous. Tools A

and B are the same but using different vocabularies
(A English, B German). Tools H and I are different
versions of the same software, where H refers to
the older version. We kept both versions because
the results were significantly different. In the test
scenarios, where the recognized text is compared to
the annotated ground truth, the normalized string
similarity from equation 14 is applied using the
Levenshtein distance.

A. Text Detection

In the first scenario the text detection quality of
the OCR applications was evaluated on whole images.
Images not containing any text should be rejected by
OCR tools, that is the output of the tools should be
empty or a certain error message should be issued.
Whether the text itself was recognized correctly or
not is disregarded in this test. Because all images in
the NEOCR dataset contain text, true negatives have
been selected manually from the MIRFLICKR-25000
dataset [39, 40]. All the 659 images from the NEOCR
dataset and the same number of true negative images
were used for testing. The results for text images
are shown in figure 5(a) and for non-text images in
figure 5(b).

OCR applications D, H and I always detected text
in the images, regardless of whether there was text
visible in the images at all. Some applications are more
cautious, especially F, which only rarely detected text.
Because in this scenario only the text detection and
rejection was considered, in the following evaluations
the correctness of the recognized text is analyzed in
detail.

B. Text Recognition in Textfields

All evaluations in this section consider only the
annotated bounding boxes (textfields). Because the
text itself doesn’t has to be located first inside the
image, considering textfields only allows to limit the
analysis to the text recognition performance. For each
experiment the number of textfields belonging to the
current characteristic is attached.

Both the results for distorted and straightened
textfields are presented for each test scenario. Straight-
ening was implemented based on the annotated
distortion quadrangles and transformation operations
of ImageMagick. Figure 6(a) shows example textfields
from the NEOCR dataset with perspective distortion.
In figure 6(b) the according straightened textfields
are depicted. Problems with straightening distorted
textfields arise for images with low resolution, strings
not completely contained in their bounding boxes
and texts with circular character arrangement. Over-
all, the resulting straightened textfields are largely
satisfying.

1) Overall Performance: Before examining the
recognition performance of the selected OCR tools for
different characteristics, the overall text recognition
performance was evaluated. In contrast to subsequent
tests, all bounding boxes of the NEOCR dataset were
used in this test. The average similarities are presented
in figure 7.

The OCR applications were evaluated with 4 dif-
ferent versions of the same textfields: original color
version, grayscale image and the inverted versions of
both. For each OCR tool the best recognition rate is
displayed along with the difference to the worst and
mean rate of the 4 versions.

The overall performance is poor, although only
textfields cut from the whole images were used in
this test. Even the best OCR tool recognizes only
every third string correctly. To answer the question
which characteristics of natural images cause the most
severe problems, text recognition is evaluated based
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Fig. 5. Figure 5(a) showing the ratio of images where the OCR tools found text in the true positive images of the NEOCR
dataset (disregarding the correct recognition of the detected text). The green part represents images where text was detected
(true positives), the red part are rejected images (false positives). Figure 5(b) showing the ratio of images where the OCR tools
found text in the true negative images selected from the MIRFLICKR-25000 dataset. The green part represents rejected images
(true negatives), the red part are images where text was detected (false negatives).

(a) Examples for distorted textfields.

(b) Straightened textfields.

Fig. 6. Examples of textfields with perspective distortion and their straightened versions.
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Fig. 7. Overall recognition correctness of the OCR tools for all bounding boxes (5238).
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Fig. 8. Text recognition performance for textfields with different character arrangement: horizontal (2598), vertical (24) and
circular (97).

on different metadata dimensions in the following
sections.

2) Character Arrangement: Text in scanned docu-
ments usually consists of horizontally arranged charac-
ters, while in natural images texts appear frequently in
vertical or circular character arrangement. To reduce
the effect of other text characteristics, only images
annotated as not difficult, without occlusion and not
inverted (dark text on light background) were used in
this test. The values for average similarities between
recognized text and ground truth annotations are
presented in figure 8. It is clearly observable that the
recognition of text with vertical and circular character
arrangement is significantly worse. Also straightening
the textfields doesn’t help much, because it doesn’t
change the arrangement itself.

In section IV-D we suggested to choose a different
distance function for vertical or circular text. The
results for different distance functions are depicted
in figures 9, 10 and 11 for different character ar-
rangements. Although the similarity value is higher
when applying the Jaro- or Jaro-Winkler distances

compared to the Levenshtein distance, there is no
clear benefit derivable from the possibility of character
swapping in the distance functions. The similarity
values for horizontal character arrangement are high
too and there is no difference observable from the ratio
of the similarity values between different character
arrangements. Because there is obviously no benefit
discoverable for using other distance functions, all
further experiments were conducted using the Leven-
shtein distance.

3) Inversion: Text in scanned documents usually
appears in black or dark color on white or light
background. Natural images contain text in much
higher variations and therefore light text on dark back-
grounds appears quite often too. To reduce the effect
of other text characteristics, only images annotated
as not difficult, without occlusion and with horizontal
character arrangement were considered in this test
scenario. Figure 12 shows that some OCR tools indeed
assume text to be dark on light background and
therefore have severe problems recognizing light text
on dark background.
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Fig. 9. Comparison of different distance functions for horizontal character arrangement (2598).
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Fig. 10. Comparison of different distance functions for vertical character arrangement (24).
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Fig. 11. Comparison of different distance functions for circular character arrangement(97).
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Fig. 12. Text recognition performance for textfields grouped by inversion: dark text on light background (inverted=false, 2598),
light text on dark background (inverted=true, 1641) and light text on dark background with inverted textfield (inverted=true &
negated, 1641)
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Fig. 13. Text recognition performance for textfields without (cover=0, 2598) and with occlusion (cover 6=0, 336).

As confirmation the negated (inverted) versions of
the same inverted (light text on dark background)
textfields were evaluated too, which resulted in better
recognition performance for all OCR tools. It is
quite obvious that dark text on light background
is recognized more precisely.

4) Occlusion: Occlusion in natural images can
result from objects covering parts of the image or
the choice of image detail by the photographer.
Depending on whether the occlusion is horizontal
or vertical, parts from all characters or only single
characters might be missing. While missing parts from
all characters can lead to not recognizing any text
at all, single missing letters might be corrected using
vocabularies.

Figure 13 depicts the recognition rate for text with
and without occlusion. To reduce the effect of other
text characteristics, only images annotated as not
difficult, with horizontal character arrangement and
without inversion were used in this test scenario.
The recognition rate for occluded text is, quite
obviously, much worse than for text without occlusion.
Figure 14 compares horizontal and vertical occlusion
and confirms the assumption that missing characters
affect text recognition less than horizontal occlusion.

Figure 15 confirms the assumption that increasing
occlusion deteriorates the recognition performance.
The same decrease can be observed in figure 16, but
some OCR tools seem to benefit from an internal
vocabulary which might correct missing or falsely
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Fig. 14. Text recognition performance for textfields with horizontal (115) and vertical (221) occlusion.
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Fig. 15. Text recognition performance for textfields based on their occlusion: 1-10 % (135), 10-30 % (134), 30-80 % (67).
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Fig. 16. Text recognition performance for textfields based on their occlusion as a percentage and grouped by their language
type: 1-10 %: languages (101), others (34); 10-30 %: languages (81), others (53); 30-80 %: languages (53), others (14).
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Fig. 17. Text recognition performance for horizontally arranged text with low (2463), mid (123) and high texture (12).
Note that the low number for highly textured text comes from the limitation to images tagged as not difficult.
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Fig. 18. Text recognition performance for textfields grouped by brightness values: 0-50 (135), 50-100 (494), 100-150 (1031),
150-200 (687) and 200-255 (251).

recognized characters. With the help of vocabularies,
obviously the recognition performance for language
dependent words is much better compared to abbre-
viations or numbers.

5) Texture: For the analysis of texture effects and
all subsequent test scenarios only textfields annotated
as not difficult, not inverted, with horizontal character
arrangement and without occlusion were considered.
The results in figure 17 confirm the assumption that
the recognition performance decreases with higher
texture. The reason for the low number of highly
textured images is that textfields in this category are
usually annotated as difficult and these images were
excluded from the test.

6) Brightness: For the analysis of text recognition
regarding brightness the values range was split into

5 groups. The best results in figure 18 are consistent
with the brightness range of most scanned documents.

7) Contrast: The values range for contrast was
divided based on the distribution in figure 3(b) into
3 groups. The results in figure 19 clearly show, that
some OCR tools fail by dealing with low contrast
textfields (values between 0 and 20). Similarly to the
evaluation of brightness effects, best recognition rates
are obtained for textfields in the range of scanned
documents.

8) Resolution: The values range for resolution was
split into 3 groups based on the usual values for pixels
per characters in scanned documents. Based on the
results depicted in figure 20, text with very low and
very high resolution is recognized more imprecisely.
This observation can be explained by the quality of
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Fig. 19. Text recognition performance for textfields grouped by contrast values: 0-20 (533), 20-50 (1625) and 50-125 (440).
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Fig. 20. Text recognition performance for textfields grouped by their resolution (average number of pixels per character):
0-500 (1134), 500-5000 (1157) and 5000-2000000 (307).
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Fig. 21. Text recognition performance for horizontally arranged text with low (2307), mid (241) and high noise (50).
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Fig. 22. Text recognition performance for horizontally arranged text with low (1-10, 1660), mid (10-100, 918) and high blurredness
(100-100000, 20).
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Fig. 23. Text recognition performance for horizontally arranged text according to its distortion: no perspective (164), multiples
of 90°(994) and others (1440).

scanned documents, where one single character is
represented on average by 2500 pixels and higher
resolutions are quite uncommon. OCR tool C is an
exception, it seems to deal with low-resolution text
better than with other resolutions.

9) Noise: Similarly to the effects of texture, increas-
ing noise degrades the recognition performance. The
results in figure 21 clearly show the negative effect
of increasing noise. OCR tools A, B, E and G seem to
have serious problems with high-noise images.

10) Blurredness: The values range for blurredness
was split into 3 groups. The results of the experiments
in figure 22 indicate the best recognition rates for
images with slight unsharpness (except for OCR tool
C). These results coincide with the observations for

resolution in section V-B8, which confirms the direct
relationship between the resolution and our defined
measurand for blurredness in section III-B.

11) Distortion: For a more detailed evaluation
of distortion effects on text recognition, textfields
without any perspective distortion or containing only
affine distortions were compared to images with
perspective distortion and rotations of multiples of 90°.
The results in figure 23 show that most OCR tools
have serious problems with rotated text. Straightening
the textfields based on the annotated distortion quad-
rangles clearly improves the recognition performance.
For example, the recognition rate both for affine and
perspective distortions is improved significantly.
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Fig. 24. Text recognition performance for horizontally arranged text with rotation values around 0°(345°to 15°) (2036),
90°(75°to 105°) (67), 180°(165°to 195°) (8) and 270°(255°to 285°) (227).
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Fig. 25. Text recognition performance for horizontally arranged text with rotation values around 0°: 0°±0°(861), 0°±5°(1681),
0°±10°(1898), 0°±15°(2036), 0°±20°(2087).

12) Rotation: Two seperate scenarios were ana-
lyzed for the effects of rotation. Figure 24 shows the
results for text rotations of multiples of 90°. Most
OCR tools struggle with severe rotations, although
some applications seem to have a built-in rotation of
180°.

In the second scenario the rotation tolerancy around
0° was analyzed in more detail. Surprisingly, figure 25
shows best results for all OCR tools around ±5°.
This indicates that obviously all applications already
assume small rotations for scanned documents.

13) Font: The evaluation of different font typefaces
in figure 26 confirmed the assumption that the best
recognition performance is achieved for standard fonts.
Possibly, the recognition correctness for handwritings

would be much higher using a specially-tailored OCR
application.

14) Language: Depending on whether an OCR
application is correcting recognized text using a built-
in vocabulary, the recognition performance can be
improved significantly. Hints for the utilization of
vocabularies are depicted in figure 27, which shows
better recognition rates for language-dependent texts
for all OCR tools.

A more detailed inspection of languages is presented
in figure 28.

The results for language-independent texts are
presented in figure 29. For most OCR applications
the recognition performance is poor for numbers and
abbreviations. Names of persons or companies are
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Fig. 26. Text recognition performance for horizontally arranged text with different font types: standard (2215),
handwriting (142) and special (241).
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Fig. 27. Text recognition performance for textfields grouped by language dependency: languages (1616) and others (982).

better recognized, which can be explained by their
higher average string length and possible inclusion in
vocabularies.

C. Summary

In this section the current state of text recognition
in natural images was evaluated based on the proposed
NEOCR dataset and using 9 open source and leading
commercial OCR applications. Thanks to the rich
metadata of the NEOCR dataset, the recogition
performance could be analyzed from different per-
spectives and several weaknesses of natural-image
OCR were identified. The results are discussed in the
next section in detail.

VI. Discussion

After defining a new dataset for OCR in natural
images in section III and analyzing current open
source and commercial OCR applications in detail in
section V, we discuss the results of our evaluation.

The results show a poor overall performance both
for detecting and filtering real text from whole images
and for recognizing characters and words. Obviously,
OCR applications D, H and I always found text in
images, whether the images contained text or not,
while other tools were more cautious with detecting
text. Poor filtering of image contents erroneously
recognized as text is still a major problem in natural-
image text OCR.

Although the subsequent tests were limited to
bounding boxes only, the average correctness of the
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Fig. 28. Text recognition performance for textfields grouped by languages: german (908), english (286), spanish (240), french
(81), hungarian (30), italian (29), czech (27), latin (8) and others (turkish, portoguese, greek, swedish, russian, belgian, 7).

text recognition in natural images is unsatisfying com-
pared to scanned documents. The low performance
results both from shorter (no text detected) and longer
text annotations (additional text was detected) as
well as incorrectly recognized characters. For the best
OCR application, the overall recognition correctness
considering textfields only resulted in around 30%
match between recognized text and ground truth
annotation.

Based on the rich annotation of the NEOCR
dataset the performance of current open source and
commercial OCR tools was evaluated for different
characteristics of natural images in detail. As assumed,
vertically and circularly aligned characters are poorly
detected. For inverted text (light text on dark back-
ground) a simple negation of the bounding box results
in a much better performance for several OCR tools,
though the average similarity still falls behind not
inverted text (dark text on light background). As
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Fig. 29. Text recognition performance for language independent texfields: numbers (431), abbreviations (236), companies (225),
persons (72), roman dates (8) and uncategorizable texts (10).

presumed, the performance for horizontally occluded
text is much worse than for text with vertical occlusion
(missing characters).

Based on the additionally annotated distortion
quadrangles in the NEOCR dataset the effects of
perspective distortions could be analyzed in more
detail. Straightened text had on average 2 to 5%
better recognition performance. In special cases – e.g.
rotations of multiples of 90° – a 20% improvement
in recognition performance was observed. The use

of vocabularies significantly improves text recogni-
tion, which was clearly observable by comparing the
recognition performance of language-dependent and
language-independent strings.

In table IV values for each metadata characteristic
are collected based on the evaluation results in
section V. These values are no surprise, most of them
represent the values range of scanned documents.
Although optimal configurations were explored for
natural images for each analyzed OCR application,



Category Values Range Optimal Value

texture low, mid, high low

birghtness 0-255 150-200

contrast 0-127 50-127

inversion true, false false

resolution 1-2000000 500-5000

noise low, mid, high low

blurredness 0-100000 10-100

distortion sx: [-1;5], sy: [-1;1.5],
rx: [-15;22], ry: [-23;4],
tx: [0;1505], ty: [0;1419],
px: [-0.03;0.07], py: [-0.02;0.02]

px: 0, py: 0

rotation 0-360 0°±5°

character arrangement horizontal, vertical, circular horizontal

occlusion 0-100 0

occlusion direction horizontal, vertical vertical

typeface standard, special, handwriting standard

language german, english, spanish, hungarian, italian, latin, french, belgian,
russian, turkish, greek, swedish, czech, portoguese, numbers, roman
date, abbreviation, company, person, unknown

french

difficult true, false false

TABLE IV
Overview of evaluated characteristics and their corresponding optimal values.

the optimal values listed in table IV indicate a very
strong tailoring of the tools for scanned documents.

VII. Conclusion

In this report the NEOCR dataset has been pre-
sented for natural-image text recognition. Besides the
bounding box annotations, the dataset is enriched
with additional metadata like rotation, occlusion or
inversion. For a more accurate ground truth repre-
sentation distortion quadrangles have been annotated
too. Due to the rich annotation, several subdatasets
can be derived from the NEOCR dataset for testing
new approaches in different situations. We evaluated
9 popular open source and commercial OCR tools to
their applicability on natural-image text OCR. Due to
the rich annotation, we conclude that the configurable
NEOCR dataset can be applied for evaluation and
comparison of natural-image text OCR approaches.
By using the dataset, differences among OCR methods

can be emphasized on a more detailed level and
deficits can be identified more accurately.

Based on the comprehensive evaluation of OCR
tools using the NEOCR dataset we conclude that
text recognition in natural images is currently poor.
Due to the severe shortcomings, unfortunately, text
recognition in its current state cannot be applied for
enhancing classification and automatic annotation
of natural images. Possibilities for further improve-
ment include the use of vocabularies [1] or the
context (e.g., other text or objects) inside the whole
image [7]. Recently, popular features from object
recognition based on histograms of gradients were
explored for character recognition with very promising
results [4]. Because current tools are obviously tailored
to scanned documents, the major challenge is to
tackle the problem of high diversity in natural-image
text. The proposed NEOCR dataset enables the very
detailed evaluation of new methods and assists the
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Fig. 30. Example bounding box and distortion quadrangle.

development of new techniques for OCR in natural
images. In future we plan to increase the number of
annotated images by opening access to our adapted
version of the LabelMe annotation tool.

Appendix A
Distortion Quadrangle
Coordinate Equations

[25] defined the distortion matrix and the corre-
sponding equations for boxes of unit length. For
bounding boxes with arbitrary length the equations
need to be adjusted.

The general representation of a perspective trans-
formation is defined in [25] as follows:

[x′, y′, w′] = [u, v, w]

a11 a12 a13
a21 a22 a23
a31 a32 a33

 (15)

By normalizing the matrix according to the scaling
parameter (a33 = 1), we get following equations for
the conversion of the original coordinates (uk, vk) for
k = 0, 1, 2, 3:

x = a11u+ a21v + a31 − a13ux− a23vx (16a)

y = a12u+ a22v + a32 − a13uy − a23vy (16b)

For the four coordinate pairs we get following linear
system of equations:

u0 v0 1 0 0 0 −u0x0 −v0x0
u1 v1 1 0 0 0 −u1x1 −v1x1
u2 v2 1 0 0 0 −u2x2 −v2x2
u3 v3 1 0 0 0 −u3x3 −v3x3
0 0 0 u0 v0 1 −u0y0 −v0y0
0 0 0 u1 v1 1 −u1y1 −v1y1
0 0 0 u2 v2 1 −u2y2 −v2y2
0 0 0 u3 v3 1 −u3y3 −v3y3


A = X

(17)
In the presented case a rectangle is transformed

into an arbitrary inlying quadrangle as depicted in
figure 30:

This limitation simplifies the system of equations
to:

(0, 0)→ (x0, y0)

(u, 0)→ (x1, y1)

(u, v)→ (x2, y2)

(0, v)→ (x3, y3)



By applying this simplification on the linear system
of equations 17 we get following equations for the
transformation parameters:

a31 = x0 (18a)

a32 = y0 (18b)

a11u+ a31 − a13ux1 = x1 (18c)

a12u+ a32 − a13uy1 = y1 (18d)

a11u+ a21v + a31 − a13ux2 − a23vx2 = x2 (18e)

a12u+ a22v + a32 − a13uy2 − a23vy2 = y2 (18f)

a21v + a31 − a23vx3 = x3 (18g)

a22v + a32 − a23vy3 = y3 (18h)

Inserting 18a in 18c:

a11u+ x0 − a13ux1 = x1

⇒ a11 = (−x0 + x1 + a13ux1)/u (19)

Inserting 18b in 18d:

a12u+ y0 − a13uy1 = y1

⇒ a12 = (−y0 + y1 + a13uy1)/u (20)

Inserting 18a in 18g:

a21v + x0 − a23vx3 = x3

⇒ a21 = (−x0 + x3 + a23vx3)/v (21)

Inserting 18b in 18h:

a22v + y0 − a23vy3 = y3

⇒ a22 = (−y0 + y3 + a23vy3)/v (22)

Inserting 18a, 19, 21 in 18e:

(−x0 + x1 + a13ux1) + (−x0 + x3 + a23vx3)

+ x0 − a13ux2 − a23vx2 = x2

− x0 + x1 − x2 + x3

+ a23v(x3 − x2) = a13u(x2 − x1)

⇒ a13 =
−x0 + x1 − x2 + x3 + a23v(x3 − x2)

u(x2 − x1)

(23)

Inserting 18b, 20, 22, 23 in 18f:

(−y0 + y1 + a13uy1) + (−y0 + y3 + a23vy3)

+ y0 − a13uy2 − a23vy2 = y2

− y0 + y1 − y2 + y3

+ a13u(y1 − y2) = a23v(y2 − y3)

(−y0 + y1 − y2 + y3)(x2 − x1)
+ (−x0 + x1 − x2 + x3)(y1 − y2) =

a23v((y2 − y3)(x2 − x1)− (x3 − x2)(y1 − y2))

a23 =
(−y0 + y1 − y2 + y3)(x2 − x1)

v((x2 − x1)(y2 − y3)− (x3 − x2)(y1 − y2))

+
(−x0 + x1 − x2 + x3)(y1 − y2)

v((x2 − x1)(y2 − y3)− (x3 − x2)(y1 − y2))
(24)

Inserting 18b, 20, 22 in 18f:

(−y0 + y1 + a13uy1) + (−y0 + y3 + a23vy3)

+ y0 − a13uy2 − a23vy2 = y2

− y0 + y1 − y2 + y3

+ a13u(y1 − y2) = a23v(y2 − y3)

⇒ a23 =
−y0 + y1 − y2 + y3 + a13u(y1 − y2)

v(y2 − y3)

(25)
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Fig. 31. Example distortion quadrangle and its rotation angle.

Inserting 18a, 19, 21, 25 in 18e:

(−x0 + x1 + a13ux1) + (−x0 + x3 + a23vx3)

+ x0 − a13ux2 − a23vx2 = x2

− x0 + x1 − x2 + x3 + a23v(x3 − x2) = a13u(x2 − x1)

(−x0 + x1 − x2 + x3)(y2 − y3)
+ (−y0 + y1 − y2 + y3)(x3 − x2) =

a13u((x2 − x1)(y2 − y3)− (y1 − y2)(x3 − x2))

a13 =
(−x0 + x1 − x2 + x3)(y2 − y3)

u((x2 − x1)(y2 − y3)− (x3 − x2)(y1 − y2))

+
(−y0 + y1 − y2 + y3)(x3 − x2)

u((x2 − x1)(y2 − y3)− (x3 − x2)(y1 − y2))
(26)

For the example in figure 30 we get:a11 a12 a13
a21 a22 a23
a31 a32 a33

 ≈
0.36 −0.22 −0.07

0.24 0.56 0.04
0 2 1


, which consists of following individual components:

• translation matrix:

 1 0 0
0 1 0
Tu Tv 1


• rotation matrix:

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1



• scaling matrix:

Su 0 0
0 Sv 0
0 0 1


• shearing (x-axis):

 1 0 0
Hv 1 0
0 0 1


• shearing (y-axis):

1 Hu 0
0 1 0
0 0 1


The translation values (a31 and a32) can be de-

rived directly from the figure 30, because they are
equivalent to the coordinates of the first point of the
distorted quadrangle. Instead of computing θ, the
type of rotation can be derived alternatively from the
shearing values (a12 and a21), because they describe
the gradients of the corresponding lines. For the
example above arctan a12 results in an angle ≈ −12°
because the deflection goes upwards, and for a21 we
get arctan a21 ≈ 13°. The scaling parameters (a11
and a22) are necessary, because the image size might
change due to rotation or shearing. The negative value
of the parameter a13 implies an enlargement of the
image on the x-axis. Accordingly, the positive value
of a23 implies a reduction for the image width.

Appendix B
Rotation Angle Equations

Rotation angles are derived from the coordinates
of the bounding box rectangle and the coordinates of
the inlying distortion quadrangle (see figure 31).

Based on the four coordinates of the distortion
quadrangle Dk(xk, yk) for k = 0, 1, 2, 3 and the three
points A(x4, y4), B(x5, y5) and C(x6, y6) the goal is
to compute α = ^BAC:



D0D3 =
√

(|x0 − x3|)2 + (|y0 − y3|)2 ≈ 2.2

D1D2 =
√

(|x1 − x2|)2 + (|y1 − y2|)2 ≈ 5.1

D0D1 =
√

(|x0 − x1|)2 + (|y0 − y1|)2 ≈ 9.2

D2D3 =
√

(|x2 − x3|)2 + (|y2 − y3|)2 ≈ 7.1

If D0D3 = D1D2 and y0 = y1: α = 0 (rectangle) or
if D0D3 = D1D2 and D0D1 = D2D3 (parallelogram),

we get: tanα = |y0−y1|
|x0−x1|

For all other cases (trapeze, arbitrary quadrangle):

x4 = (|x3 − x0|)/2 + min(x0, x3)

y4 = (|y3 − y0|)/2 + min(y0, y3)

x6 = (|x2 − x1|)/2 + min(x1, x2)

y6 = (|y2 − y1|)/2 + min(y1, y2)

y5 = y4 x5 = ?

Point of intersection of lines D1D2: y = y1 +
y2−y1
x2−x1

(x− x1) and AB:

⇒ x5 =
(y4 − y1)(x2 − x1)

y2 − y1
+ x1

With the application of the law of cosines we get:

AB = x5 − x4
AC =

√
(|x6 − x4|)2 + (|y6 − y4|)2

BC =
√

(|x6 − x5|)2 + (|y6 − y5|)2

cosα =
AB

2
+AC

2 −BC2

2ABAC
if y6 > y5: α = 360− α

⇒ α ≈ 5.5° for the example in figure 31.
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