Wang XML Notation

The XML notation is chosen to represent the ground truth which is the Augmented Wang Notation for the table. The XML file contains 7 main sections that detail various parts of a table. This document describes the Wang XML [1] notation using the table in Figure 1 as an example.

Region and State Information

Location	Population (2000)	Longitude †
Northeast	3.120	
Maine	1.275	$69^{\circ} 14.0^{\prime} \mathrm{W}$
New Hampshire	1.236	$71^{\circ} 34.3^{\prime} \mathrm{W}$
Vermont	0.609	$72^{\circ} 40.3^{\prime} \mathrm{W}$
Northwest	9.315	
Washington	5.894	$120^{\circ} 16.1^{\prime} \mathrm{W}$
Oregon	3.421	$120^{\circ} 58.7^{\prime} \mathrm{W}$

*Population in Millions
${ }^{\dagger}$ Geographic Center

Fig. 1 Region and State Information

Section1: The XML begins with:

$$
\begin{gathered}
\text { <?xml version="1.0"?> } \\
\text { <TableOntology> }
\end{gathered}
$$

Fig. 2 XML Section 1
The first line of the document states the version and notifies the reader that it is a valid XML document. The second line informs the reader that this XML is for a table ontology.

Section2: This section contains basic information about the table:

<Table TableOID="T13967" Title="Region and State Information" Caption="Sample Table" DocumentCitation="Lynn, S. and Embley, D.W., Semantically Conceptualizing and Annotating Tables, Technical Report, Brigham Young University, July 2008, www.deg.byu.edu/papers/TableConceptualization.pdf" Number="1">
<CategoryRootNodes>
<CategoryRootNode CategoryRootNodeOID="C1"/>
<CategoryRootNode CategoryRootNodeOID="C2"/>
</CategoryRootNodes>
</Table>
Fig. 3 XML Section 2
The table element contains multiple attributes like TableOID, Title, Caption, DocumentCitation, and Number. The table element contains the CategoryRootNodes element. This element contains the CategoryRootNodeOID attribute. The example table has a Wang dimensionality of 2 so there are two category root nodes. The CategoryRootNodeOID values are obtained from the indented notation sheets and are ordered based on the location of the cells in the sheet as below:

Consider a simulated table shown in Figure 4.

STUB		C 21	
		C 12	
R21	R11	XX	XX
	R12	XX	XX
	R13	XX	XX

Fig. 4 Simulated Table

Wang's category trees for tables are represented using the indented notation constructed from the list-row notation. In the indented notation, nodes at the same level of the tree appear in the same column. The children of a particular node in the tree appear below the node in the next column. The indented notation is formed by looping through the list-row notation and printing the values of the rows in such a way that no paths in the tree are repeated. Figures 1 and 2 represent the indented notation for Simulated Table 1.

R21	
	R11
	R12
	R13

C21	
	C11
	C12

Fig. 5 Indented Notation for Row Category
Fig. 6

Indented Notation for Column Category

The OID notation for the above categories is:

C1	
	C1.1
	C1.2
	C1.3

Fig. 7 OID Notation for Row Category

C 2	
	C 2.1
	C 2.2

Fig. 8 OID Notation for Column Category

The C21, C11 and C12 nodes are just used to represent column categories as in previous Figures. But the Cx.x notation in the OID notation is a notation for categories used for every table in the XML notation.

Section3: The third section lists every category node in the table:

```
    <CategoryNodes>
    <CategoryNode CategoryNodeOID="C1"/>
<CategoryNode CategoryNodeOID="C1.1" Label="Population"/>
```

> <CategoryNode CategoryNodeOID="C1.2" Label="Longitude"/>
> <CategoryNode CategoryNodeOID="C2" Label="Location"/>
> <CategoryNode CategoryNodeOID="C2.1" Label="Northeast"/>
> <CategoryNode CategoryNodeOID="C2.1.1" Label="Maine"/>
> <CategoryNode CategoryNodeOID="C2.1.2" Label="New Hampshire"/>
> <CategoryNode CategoryNodeOID="C2.1.3" Label="Vermont"/>
> <CategoryNode CategoryNodeOID="C2.2" Label="Northwest"/>
> <CategoryNode CategoryNodeOID="C2.2.1" Label="Washington"/>
> <CategoryNode CategoryNodeOID="C2.2.2" Label="Oregon"/>
> </CategoryNodes>

Fig. 9 XML Section 3

The category nodes element contains a list of every category node in the table. Every category node element contains an attribute CategoryNodeOID which is the category's operational id number. From the example one can see that if a category node belongs to category root C1, it will share the same prefix in its OID. The following diagram may help explain how the id scheme works.

Fig. 10 Category Tree 1 for table in Fig. 1

Fig. 11 Category Tree 2 for table in Fig. 1

C2.1 and C2.2 are aggregates which is why they are repeated in the tree. While they are shown twice in the tree and table they are not listed twice in the XML. If a category has a label, which should be every category node except possibly category root nodes, the label will also be added as an attribute.

Section4: The next section lists the category nodes with their children:

$$
\begin{gathered}
\text { <CategoryParentNodes> } \\
\text { <CategoryParentNode CategoryParentNodeOID="C1"> } \\
\text { <CategoryNodes> } \\
\text { <CategoryNode CategoryNodeOID="C1.1" /> } \\
\text { <CategoryNode CategoryNodeOID="C1.2" /> } \\
\text { </CategoryNodes> } \\
\text { </CategoryParentNode> } \\
\text { <CategoryParentNode CategoryParentNodeOID="C2"> } \\
\text { <CategoryNodes> } \\
\text { <CategoryNode CategoryNodeOID="C2.1" /> } \\
\text { <CategoryNode CategoryNodeOID="C2.2" /> } \\
\text { </CategoryNodes> } \\
\text { </CategoryParentNode> } \\
\text { <CategoryParentNode CategoryParentNodeOID="C2.1"> } \\
\text { <CategoryNodes> } \\
\text { <CategoryNode CategoryNodeOID="C2.1.1"/> }
\end{gathered}
$$

> <CategoryNode CategoryNodeOID="C2.1.2"/>
> <CategoryNode CategoryNodeOID="C2.1.3"/>
> </CategoryNodes>
> </CategoryParentNode>
> <CategoryParentNode CategoryParentNodeOID="C2.2">
> <CategoryNodes>
> <CategoryNode CategoryNodeOID="C2.2.1"/>
> <CategoryNode CategoryNodeOID="C2.2.2"/>
> </CategoryNodes>
> </CategoryParentNode>
> </CategoryParentNodes>

Fig. 12 XML Section 4

This section begins with the element CategoryParentNodes which contains a list of all the category nodes that have children. Each element in the list is of type CategoryParentNode and has a CategoryParentNodeOID attribute whose value is the same as its CategoryNodeOID value. Each of these elements contains an element CategoryNodes. This element contains a list of the current category parent node’s direct children of element type CategoryNode.

Section5: DataCells are listed in this section:

> <DataCells>
> <DataCell DataCellOID="D1,1" DataValue="3.120"> <HeaderNodes>
> <HeaderNode HeaderNodeOID="C2.1"/>
> </HeaderNodes>
> <CategoryLeafNodes>
> <CategoryLeafNode CategoryLeafNodeOID="C1.1" />
> </CategoryLeafNodes>
> </DataCell>
> <DataCell DataCellOID="D1,2">

```
                        <HeaderNodes>
        <HeaderNode HeaderNodeOID="C2.1"/>
            </HeaderNodes>
        <CategoryLeafNodes>
<CategoryLeafNode CategoryLeafNodeOID="C1.2" />
        </CategoryLeafNodes>
            </DataCell>
    <DataCell DataCellOID="D2,1" DataValue="1.275">
        <CategoryLeafNodes>
    <CategoryLeafNode CategoryLeafNodeOID="C1.1" />
<CategoryLeafNode CategoryLeafNodeOID="C2.1.1" />
    </CategoryLeafNodes>
            </DataCell>
                    </DataCells>
```

Fig. 13 XML Section 5
This section consists of the DataCells element. Within this element is a list of elements that detail each data cell within the table. Each data cell has its own DataCell element with its DataCellOID attribute which is its x and y coordinates in the Excel table with $(1,1)$ being the data cell in the top left corner. The x-coordinate increases to the right and the y-coordinate increases from top to bottom. DataCells usually contain a second attribute, DataValue, whose value is the textual or numerical content of that data cell within the table. Within each DataCell there may be a list of HeaderNodes, CategoryLeafNodes, or both. HeaderNodes are category nodes that are aggregates. For example C2.1 is an aggregate since it contains the accumulated information for Maine, New Hampshire and Vermont. It has children and it is not a leaf node, which is why it is put into the HeaderNodes list. Each HeaderNode element has a HeaderNodeOID attribute which is its CategoryNodeOID. If on the other hand the category associated with the data cell is a leaf node it will be listed in the CategoryLeafNodes element.

Each of these will be listed as an element type CategoryLeafNode. Similar to the HeaderNode elements they also have a CategoryLeafNodeOID attribute that is the same as their category node OID.

Section6: The next important section lists all the augmentations that occur within the table:

> <Augmentations>
> <Augmentation AugmentationOID="A1" AugmentationText="2000">
> <CategoryNode CategoryNodeOID="C1.1"/>
> </Augmentation>
> <Augmentation AugmentationOID="A2" AugmentationText="Population in Millions"
> FootnoteReference="\%ampersand\%number42;">
> <CategoryNode CategoryNodeOID="C1.1"/>
> </Augmentation>
> <Augmentation AugmentationOID="A3" AugmentationText="Geographic Center"
> FootnoteReference="\%ampersand\%dagger;">
> <CategoryNode CategoryNodeOID="C1.2"/>
> </Augmentation>
> <Augmentation AugmentationOID="A4" AugmentationText="Geographic Center"
> FootnoteReference="\%ampersand\%dagger;">
> <CategoryNode CategoryNodeOID="C1.3"/>
> </Augmentation>
> </Augmentations>

Fig. 14 XML Section 6
In this section we have the Augmentations element. Within this element we see a list of Augmentation elements. Each Augmentation element has an AugmentationOID attribute. The numbering is sequential. If the Augmentation is a footnote it will contain the AugmentationText attribute and may also contain a FootnoteReference attribute. The AugmentationText is the comment about the cell and FootnoteReference is the type of symbol used in the cell to point to the footnote. If the Augmentation is a Unit it will have an attribute AugmentationType with value
"Units". Lastly if the Augmentation is of type "Other" the element will have an attribute AugmentationText. Within each Augmentation element there is another element. This element will be of type CategoryNode or DataCell and will contain the OID of the cell(s) the augmentation corresponds to.

Section7: The last part of the XML is the closing label for the Table Ontology:
</TableOntology>

Fig. 15 XML Section 7

References:
R. Padmanabhan, R. C. Jandhyala, M. Krishnamoorthy, G. Nagy, S. Seth, W. Silversmith, Interactive Conversion of Large Web Tables, Proceedings of Eighth International Workshop on Graphics Recognition, GREC 2009, Published by City University of La Rochelle, La Rochelle, France, July 22-23, 2009.

