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Abstract 
 

This paper presents an overview of the second 

Competition on Recognition of Online Handwritten 

Mathematical Expressions, CROHME 2012. The 

objective of the contest is to identify current advances 

in mathematical expression recognition using common 

evaluation performance measures and datasets. This 

paper describes the contest details including the 

evaluation measures used as well as the performance 

of the 7 submitted systems along with a short 

description of each system. Progress as compared to 

the 1st version of CROHME is also documented. 

 

 

1. Introduction 
 

As a research problem, automatic recognition of 
mathematical expressions (ME) exhibits several 
fascinating challenges [1]. This recognition problem is 
different from the traditional OCR problem. Presence 
of two-dimensional structures, enormous uncertainties 
and ambiguities in handwritten expressions makes the 
automatic understanding problem difficult and at the 
same time enticing for the researchers. Achieving 
success in this domain would in turn progress the state 
of the art in understanding of visual languages. 

 

The birth of CROHME (Competition on 
Recognition of Online Handwritten Mathematical 
Expressions) aimed at bringing the researchers under a 
common platform so that they share the same dataset 
for their respective research and report performance of 
their systems on a common test data. The first version 
of CROHME was organized with ICDAR 2011 [2]. 
The evaluation results nicely addressed the 
achievement of the systems and pointed out the issues 
for future research. 

The second version of CROHME, organized with 
ICFHR 2012, shares the same spirit. Number of 
participating groups is increased as it was expected. 
Interestingly, industry research labs also participated 
along with University labs. The training dataset is 
augmented by adding more samples to represent more 
varieties and real life difficulties in the dataset. A new 
test set is developed and several new analyses are done 
as part of the evaluation. 

The rest of the paper is organized as follows. 
Section 2 provides an overview of the format of the 
competition, its organizers, the participants, data set, 
evaluation strategies, etc. Section-3 gives elaborate 
information on data format and organization of the 
data set and its content and coverage. Section 4 briefly 
describes the working principles of the participating 
systems. Section 5 presents the evaluation results, 
analysis of the results and announces the winner of this 
competition. The following section, i.e., section-6 
concludes the paper. 



2. Overview of the competition 
 

The same three research labs who organized 
CROHME 2011 conducted this competition. Initially, 
ten research groups registered themselves for 
participating in this event. Eight research groups 
participated in the development process, i.e., received 
the training dataset and attempted to develop their 
systems. Finally, six teams submitted their systems. 
However, an additional seventh system was developed 
by one of the organizing groups and hence, it was not 
considered as a competing system. 

 

Table 1. CROHME 2011 vs. CROHME 2012 

Features CROHME 2011 CROHME 2012 

# Registrations 6 10 

# Training 

samples 

921 (divided into 

two parts) 

1336 (divided 

into three parts) 

# Grammars 2 3 

# Test samples 348 488 

#  Systems  5 7 

 
The dataset has three parts. Part-I and Part-II were 

present in CROHME 2011. A new part, i.e. PART-III 
is added in this competition. Each part is characterized 
by its respective grammar. The details about the 
grammars are given in the next section. 

A new test dataset, different from CROHME 2011, 
is formed for evaluating CROHME 2012 systems. Like 
training samples, test expressions are also divided into 
three parts conforming to the grammars defined for 
each one. The training data was distributed two and 
half months before the evaluation of the systems, while 
testing was done at the organizers’ end. Five 
parameters as explained in section-5 are measured for 
evaluating the recognizers. However, the final rating is 
based on the expression recognition accuracy for Part-
III test samples. The details of evaluation are reported 
in section-5. Table 1 summarizes the significant 
differences between CROHME 2011 and 2012. Table 
2 shows the number of samples in CROHME 2012 
training and test datasets. 
 

3. Data format, training and testing sets 
 

The ink corresponding to each expression is stored 
in an InkML file. An InkML file mainly contains three 
kinds of information: (i) the ink: a set of traces made 
of points; (ii) the symbol level ground truth: the 
segmentation and label information of each symbol of 
the expression; and (iii) the expression level ground 
truth: the MathML structure of the expression. 

The two levels of ground truth information (at the 
symbol as well as at the expression level) are entered 

manually. Furthermore, some general information is 
added in the file: (i) the channels (here, X and Y); (ii) 
the writer information (identification, handedness 
(left/right), age, gender, etc.), if available; (iii) the 
LaTeX ground truth (without any reference to the ink 
and hence, easy to render); (iv) the unique 
identification code of the ink (UI), etc. 

 

Table 2. Data in CROHME 2012 

Number of expression samples in 
Dataset 

Part-I Part-II Part-III 

Training 296 921 1336 

Test 108 301 488 

 
The InkML format makes references between the 

digital ink of the expression, its segmentation into 
symbols and its MathML representation. Thus, the 
stroke segmentation of a symbol can be linked to its 
MathML representation.  

The type of expressions that are allowed to appear 
in a part is dictated by the corresponding grammar, 
which is checked on the LaTex string. The grammar 
for Part-I accepts only 41 terminals and imposes 
limitations among logical relationships: (i) only one 
symbol in subscript or superscript is allowed, (ii) no 
recursive fraction is there, however, a sum of fraction 
or fraction of sum may appear but no fraction of 
fractions can be allowed, (iii) no product of fraction 
can appear in the expressions. Two permissible 
recursive expressions are: (a) repeated sum, i.e. sum of 
sums is permitted and (b) nested root, i.e. a square root 
can be found in other square root. 

The grammar for Part-II expression is less 
restricted than that of Part-I. The number of terminal 
symbols is increased to 60. There are no limits on 
recursions of operations like sum, product, function 
call, fraction, root, sub/superscript on symbols, etc. 
Grammar-III further relaxes restrictions. Though a 
human readable version of Grammar-III was not 
provided, a parsing script is made available to the 
participants. The number of terminal symbols is 
increased to 75 (mainly adding brackets, some Latin, 
Greek letters and set operators). For dataset request 
and explicit grammar rules  one  may  look  at the 
competition site, i.e. http://www.isical.ac.in/~crohme. 
Validators are available to check whether a given 
expression conforms to a particular grammar. The 
validator extracts the LaTeX string of the expression 
and parses it to validate whether it is accepted by a 
grammar (i.e. Grammar I, II, or III). 

MathML normalization: As the evaluation attempts 
to do an exact matching of MathML structures, the 
MathML output produced by the recognition systems 
should use the same structure as the ground-truth. The 
problem is that several MathML valid structures can 



represent the same expression. Hence, normalized 
descriptions with predefined rules are checked and 
processed during evaluation. 

 

4. Overview of the participating systems 
 

Ten participants originally registered for 

participating in the competition. Two teams remained 

silent after receiving training data and the other eight 

teams continued to work on developing/improving 

their systems for the competition. Finally, two teams 

decided not to participate in the blind evaluation 

process and six systems were submitted for evaluation. 

A system developed by one of the organizing labs also 

participated in the evaluation process. Hence, 

altogether seven systems were evaluated. Out of these 

seven systems, five systems participated in CROHME 

2011. So CROHME 2012 introduces two new systems 

one of them is from an industry. Table-3 provides the 

affiliations of the participating teams. 

System-I: This recognition system is based on 

stochastic context-free parsing of two-dimensional 

(2D) grammars [3]. The recognition process is a CYK-

based parsing method such that the parsing table is 

initialized with several segmentation and symbol 

recognition hypotheses. Then the parsing algorithm 

obtains the most probable hypothesis according to the 

given grammar. Thus, the system solves jointly the 

symbol recognition and structural analysis of the 

handwritten mathematical expression by using both 

online and offline information. 

System-II: This system is developed at the Institute for 

Language and Speech Processing, Athena and named 

as Math-ILSP system. The system incorporates the 

following two major modules: (i) symbol recognition 

based on a template elastic matching distance between 

pen direction features [4] and (ii) structural analysis of 

the ME based on extracting the baseline of the ME and 

then classifying symbols into levels above and below 

the baseline. The symbols are then sequentially 

analyzed using six spatial relations and the respective 

2D structure is interpreted to give the resulting 

MathML representation of the input expression. 

System-III: This system [5] is based on the PhD work 

of A. M. Awal adapted to this new competition by S. 

Medjkoune. It aims at handling mathematical 

expression recognition as a simultaneous optimization 

of expression segmentation, symbol recognition, and 

2D structure recognition under the restriction of a 

mathematical expression grammar. The approach 

transforms the recognition problem into a research of 

the best possible interpretation of a sequence of input 

strokes. The symbol classifier is a classical neural 

network, a multilayer perceptron, which has the 

capability to reject the invalid segmentation 

hypotheses, unlike most existing works. The originality 

of the system stems from the global learning schema. 

This learning allows training the symbol classifier 

directly from mathematical expressions. The advantage 

of this global learning is to consider the junk examples 

and include them in the symbol classifier knowledge. 

Furthermore, we have proposed a contextual modeling 

based on structural analysis of the expression. This 

analysis is based on models learnt directly from the 

expressions using the global learning scheme, most of 

the expressions used from training come from the 

HAMEX dataset [6]. 

 

Table 3. CROHME 2012 participating groups 

System Group Country 

I University of Valencia Spain 

II Athena Research Center Greece 

III University of Nantes* France 

IV Rochester Institute of Technology USA 

V Sabanci University Turkey 

VI University of Waterloo (new comer) Canada 

VII Vision Objects  (new comer) France 

* This is the system from one of the organizer. 

System-IV: Rochester Institute of Technology (NY, 

USA) submitted this three-stage system comprised of a 

fuzzy segmenter, a Hidden Markov Model classifier, 

and a DRACULAE parser [7]. 

Strokes are pre-processed to detect some specific 

conditions to guide the subsequent merging. The 

merge membership values of the strokes are defined by 

comparing the stroke distances against predefined 

threshold values. All possible sequences of merge 

decisions are considered for sequences of 

strokes/segments where segmentation is not 

determined precisely. These (local) segmentation 

alternatives are scored by the product of merge and 

split (set to ‘1’) membership. An upper bound of 10 

adjacent strokes in one of these fuzzy regions is set to 

reduce combinations. 

The HMM used for classification is similar to that 

in [8], trained on the Part 3 data, but with an additional 

angular feature. The final segmentation obtained by 

greedy selection of the highest probability for each 

local fuzzy segmentation. A second segmentation index 

is obtained using the sum of the top-1 HMM 

classification probability, and its division by the 

average probability produced for symbols of the 

correct class after training. This sum is associated with 

each stroke belonging to a segment/symbol, and then 

added across strokes in a fuzzy segmentation.  The 



final segmentation probability is defined using a 

histogram over the fuzzy and HMM-based scores, to 

estimate the highest probable valid segmentation.  

Finally, a DRACULAE parser is used to produce 

the final parse result from symbols and their bounding 

boxes [7]. Additional tree rewriting rules are added to 

correct common classification errors (e.g. recognizing 

'log' as '10g'). 

System-V: The system from Sabanci University, 

Turkey, uses a 2D-stochastic grammar to parse the 

handwritten ME. During the parsing of the input, 

grammar rules are applied iteratively until no more 

rules can be applied. Each rule generates a token and 

the system aims to build one token representing the 

whole expression at the end of the recognition process. 

A grammar rule is applicable for a given set of 

tokens (initially recognized symbols) if the 

applicability predicate of the rule decides that the 

required relationship (up, down, inside etc.) roughly 

exists between the given tokens. Each rule generates a 

new token from the neighboring tokens generated in 

the previous stages. For instance, the subscript rule 

expects the subscript token to be roughly below and to 

the right of the main token. A likelihood score is 

assigned to the generated token based on the likelihood 

of the component symbols and the likelihood of the 2D 

relationship between the component symbols. In case 

of a subscript, the likelihood value depends on the 

relative position and size of the two tokens. 

In this system, the grammar rules are applied 

without any particular order, because the system 

generates all likely interpretations of a given input 

string, along with their likelihoods. The system can be 

for longer expressions, as it keeps track of all possible 

likely interpretations of neighboring tokens. In future 

work, we will look at speeding up the system by 

expanding the most likely tokens first. Details of the 

system can be found in [9]. It is to be noted that this 

system does not incorporate any special measure to 

handle Part-III expressions. Results reported for this 

system on Part-III expressions are basically achieved 

by the system tuned for Part-II dataset. 

System-VI: The Waterloo recognizer [10] was 

developed for the MathBrush pen-math system [11], 

and is based on relational grammars and fuzzy sets. It 

works in three stages: symbol recognition, parsing, and 

tree extraction. In the symbol recognition step, 

candidate stroke groups are identified in the input by 

measuring the distance between nearby strokes and the 

degree to which stroke bounding boxes overlap. Input 

features such as dots and stacked structures (as in ‘  

and ‘ ’) are also identified and grouped. At this point, 

the input is typically oversegmented. Using a symbol 

recognizer [10], each potential group is assigned a list 

of candidate symbols with confidence scores. 

The parsing step uses a fuzzy relational grammar 

and a variant of Unger's top-down parsing method to 

generate a shared parse forest representing all 

recognizable parses of the input. The grammar 

includes five relations: horizontal and vertical 

adjacency, subscript, superscript, and containment. 

Each production may use one relation, with each 

adjacent pair of RHS entries being required to satisfy 

the relation. To reduce the algorithm's complexity, 

only rectangular partitions of the input are parsed. The 

symbol recognition candidates and grammar relations 

further prune the search space. In this step, relation 

membership is based on the angle between bounding 

box centroids and bounding box overlap. 

Finally, in the tree extraction step, individual parse 

trees are extracted in ranked order from the parse 

forest. The score of a tree is given by the geometric 

average of all the relevant symbol recognition scores 

and relation membership grades. In this step, more 

specific relation membership functions are used, which 

take into account the specific content of a parse tree by 

means of “relational classes”. These classes include 

“baseline symbol”, “ascender”, “descender”', etc. The 

relation functions compare also relative heights, 

baseline positions, and the distance between symbols. 

For CROHME, only the first tree, representing the top-

ranked parse, is used and converted to MathML. 

System-VII: The MyScript Equation recognizer from 

Vision Objects (http://www.visionobjects.com), France 

is an on-line recognizer that processes digital ink. The 

overall recognition system is built on the principle that 

segmentation, recognition and interpretation have to be 

handled concurrently and at the same level in order to 

result in the best candidate. The Equation recognition 

engine analyzes the spatial relationships between all 

the parts of the equation, in conformity with the rules 

laid down in its grammar, to determine the 

segmentation of all its parts. The grammar is defined 

by a set of rules describing how to parse an equation, 

each rule being associated with a specific spatial 

relationship. For instance, a fraction rule defines a 

vertical relationship between a numerator, a fraction 

bar and a denominator. The Equation recognizer has 

also a symbol expert that estimates the probabilities for 

all the parts in the suggested segmentation. This expert 

is based on feature extraction stages, where different 

sets of features are computed. These feature sets use a 

combination of on-line and off-line information. The 

feature sets are processed by a set of character 

classifiers, which use Neural Networks and other 

pattern recognition paradigms. The Equation 



recognition engine includes a statistical language 

model that uses context information between the 

different symbols depending on their spatial 

relationships in the equation. Statistics have been 

estimated on hundreds of thousands of equations. A 

global discriminant training scheme on the equation 

level with automatic learning of all classifier 

parameters and meta-parameters of the recognizer is 

employed for the overall training of the recognizer. 

 

5. Evaluation 
 

For each system, five aspects are measured. They 

are (i) ST_Rec: the stroke classification rate, 

representing the percentage of strokes with the correct 

symbol, (ii) SYM_Seg: the symbol segmentation rate, 

defining the percentage of symbols correctly 

segmented, (iii) SYM_Rec; the symbol recognition rate, 

computing the performance of the symbol classifier 

when considering only the correct segmented symbols, 

(iv) STRUCT: the MathML structure recognition rate, 

computing the percentage of expressions (MEs) having 

the correct MathML tree as output irrespective of the 

symbols attached to its leaves, e.g., these two 

expressions share the same MathML structure: “x
2 
– 1” 

and “2
a 
+ b”. The last measurement is (v) EXP_Rec: 

the expression recognition rate, which informs the 

percentage of MEs totally correctly recognized. This is 

a very challenging indicator since the slightest error 

anywhere in the ME prevents to count it. However, in 

order to have a better insight of the capacity of the 

respective systems, we also extend this indicator with 

(vi) EXP-Rec_1, _2, _3, giving the percentage of MEs 

recognized with at most 1 error, 2 errors and 3 errors 

(in terminal symbols or in MathML node tags) given 

that the tree structure is correct. 

In order to measure the progress of the systems, 

first, we benchmark them on the test dataset used for 

CROHME 2011, which was composed of two parts. 

This dataset was publicly available to the participants. 

The results are given in Table 4. It can be observed 

that a very significant increase in expression level 

recognition has been achieved in 2012 with respect to 

CROHME 2011. Four of these systems (I, III, VI and 

VII) are better than the winner (I) of the first 

CROHME contest [2] which achieved an expression 

level recognition accuracy of 19.8% on Part II test set. 

As explained in Sections II and III, we have 

defined three levels in the competition this year 

compared to the two levels defined during CROHME 

2011. Only the three training datasets were available 

for the participants. The results for CROHME 2012 

are displayed in Table 5. 

Table 4. Expression level recognition rates on 

the test dataset of CROHME 2011 

Part I Part II 

System System 

2011 

System 

2012 

System 

2011 

System 

2012 

I 29.28 33.15 19.83 34.48 

II 0.0 17.13 0.0 7.76 

III 40.88 63.54 22.41 47.41 

IV 4.42 27.07 2.59 16.38 

V 0.55 30.94 0.29 18.68 

VI N/A. 57.46 N/A 54.70 

VII N/A 91.16 N/A 85.34 

 

Table 5. Main results on the test dataset of 

CROHME 2012 

 System 
ST 

_Rec 

SYM 

_Seg 

SYM 

_Rec 
STRUCT 

EXP 

_Rec 

I 80.74 90.74 89.20 62.04 35.19 

II 59.14 73.31 79.79 21.30 8.33 

III 90.05 94.44 95.96 70.37 57.41 

IV 78.24 92.81 86.62 50.93 28.70 

V 61.33 72.11 87.76 37.04 22.22 

VI 89.00 97.39 91.72 78.70 51.85 

P
a
rt

 I
 

VII 97.01 99.24 97.80 91.67 81.48 

I 85.05 90.66 91.75 50.17 33.89 

II 58.53 72.19 86.95 12.29 6.64 

III 82.28 88.51 94.43 49.83 38.87 

IV 76.07 89.29 91.21 27.57 14.29 

V 49.06 61.09 88.36 17.61 7.97 

VI 90.71 96.67 94.57 69.44 49.17 

P
a
r
t 
II

 

VII 96.85 98.71 98.06 88.37 75.08 

I 79.85 91.95 86.25 42.21 22.75 

II 55.75 71.21 84.97 9.84 3.69 

III 78.94 87.75 91.38 36.89 25.61 

IV 72.12 87.51 87.62 23.77 9.43 

V 45.42 59.20 84.27 14.75 4.92 

VI 86.41 95.56 91.17 61.27 40.16 

P
a
rt

 I
II

 

VII 95.75 98.84 96.85 80.33 62.50 

 

When comparing Parts I and II from Tables 4 and 

5, we notice that the new test set for Part I is somehow 

easier than its last year’s counterpart, but conversely 

Part II test set is slightly more difficult than it was in 

2011. As mentioned in the call for competition, we 

have ranked the system according to the EXP_Rec rate 

obtained on Part III test dataset. System VII (Vision 

Objects) is clearly the winner of this second edition 

of CROHME. With this system, 62.5% of Part III 

expressions are fully recognized, and 80.3% have a 

correct layout structure. To have a better idea of the 

capabilities of the systems we have computed Table 6 

that shows the expression recognition accuracies with 

one, two or three errors per expression. 

 



Table 6. Expression recognition rates with 1, 2 

or 3 errors on CROHME 2012 Part III 

System 
EXP 

_Rec 

EXP 

Rec_1 

EXP 

Rec_2 

EXP 

Rec_3 

I 22.75 34.63 40.98 42.21 

II 3.69 6.35 9.02 10.45 

III 25.61 36.07 39.14 39.96 

IV 9.43 18.44 23.16 24.80 

V 4.92 10.66 14.14 14.96 

VI 40.16 54.10 59.02 61.89 

VII 62.50 78.89 81.76 81.97 

A gap exists between EXP_Rec and EXP_REC_1, 

showing that the corresponding systems have enough 

room for further improvements. Conversely, the 

narrow differences between EXP_REC_2 and 

EXP_REC_3 show that when more errors go wrong, it 

is difficult to improve the accuracy by incorporating a 

single correction. 
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FIGURE 1. Recognition rates (EXP_Rec) with 

respect to the expression length on Part III 

 

Another interesting analysis concerns the 

distribution of errors with respect to the size of the 

expressions. Of course, the longer the expressions, the 

harder it is to recognize them. Figure 1 illustrates this 

behavior, and displays analysis results for the three 

leading systems (III, VI, and VII). The best system 

succeeds to recognize 73% of the short expressions 

and 40% of the longest expressions. 

 

6. Conclusion 
 

The second edition of CROHME has confirmed the 

interest of the international community for this event. 

The number of participants has increased, from five for 

CROHME 2011 to seven in 2012, with the presence of 

six academic teams and one company. Five groups are 

coming from Europe and two from North America. We 

would like to encourage new comers, specifically from 

Asia, to join the subsequent CROHME session. 

The evaluation results show the considerable 
improvements over CROHME 2011. The expression 
level accuracy has achieved an impressive rate, i.e. 
62.5% by the winning system, while the other systems 
have also made significant progress. However, there is 
still room for more improvements, and we plan to 
pursue this initiative in near future. We would like to 
extend the contest with an additional Part IV which 
would include more symbols, specifically all related to 
set theory, and to adapt the grammar to support the 
Boolean notation with an over-bar to denote a 

negation, as in . .a b a b a b . 
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