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Abstract— A neural network model for handwritten script 
generation is proposed, in which curvilinear velocity signals 
are approximated by the Beta profiles. For each Beta profile 
we associate an elliptic arc to fit the initial stroke in the 
trajectory domain. The network architecture consists of an 
input layer which uploads the set of Beta-elliptic 
characteristics as input, hidden layers and the output layer 
where script coordinates X(t) and Y(t) are estimated. A 
separate timing network prepares the input data.  This latter 
involves the time-index starting time of each simple stroke for 
an appropriate handwriting movement signal. The 
experiments showed that the neural network model could be 
applied for the case of Latin handwriting scripts as well as 
Arabic handwriting scripts. New ways are proposed for the 
application of the neural network model such as: generation of 
complex handwriting movements, shape and character 
recognition. 

Keywords- handwriting generation; Beta-elliptic model; 

neural network model. 

I.  INTRODUCTION  

Writing is a motor activity among the most complex and 
fastest engine of our directory. It seeks the coordinated 
activity of multiple muscles and joints of the upper limb to 
produce a series of graphic forms in a timely and precise 
enough to be recognized [1]. Despite the structural and 
functional complexity, humans are able to produce graphic 
forms accurately and stable and to adapt their production 
according to the conditions under which they must do. As the 
set of human motor behavior, the problem is how individuals 
can control and coordinate all elements of the motor system 
(here graphomotor) to accomplish this motor task. In a 
system composed of a large number of elements, it is 
unlikely that our brain can control and regulate all 
components independently to produce a motor action [2][3]. 
We must find a solution that reduces to a few numbers of 
variables to control, leading to the production of a stable and 
flexible behavior. To date, two major theoretical approaches 
have attempted to identify the principles that underlie the 
production, control and adaptation of coordinated 
movements: traditional theories of motor control on the one 
hand, and theories of motor dynamics coordination on the 
other. 

Models of handwriting: In the follow we cite some of the 
important handwriting models, particularly emphasizing on 

those used to inspire the proposed handwriting model. Two 
general approaches of handwriting model have been adopted 
by searchers in the past [4]. The first one, called the “bottom-
up” approach, refers to computational models which attempt 
to empirically regenerate handwriting features such as 
velocity and acceleration profiles. This models do not take in 
consideration the neuromotor processes derived by the 
handwriting processes [5][6]. The second approach of 
handwriting modeling based on psychologically descriptive 
models [7][8]. These “top-down” models usually summarize 
many issues such as, motor learning, movement memory, 
planning and sequencing, co-articulation and task complexity 
of strokes [9]. The present work is closer to the “top-down” 
category. 

In Hollerbach [10], the oscillation theory of handwriting 
represents an important class of handwriting models, is based 
on the theory that stroke data can be resolved into certain 
oscillatory mechanisms by Fourier decomposition. The 
oscillation theory was developed by Hollerbach [10] who 
proposed an insightful handwriting generation model where 
the hand-pen system is represented by two orthogonal pairs 
of opposing springs acting on an inertial load. It was 
emphasized that the oscillatory natural movements of this 
system be similar to real handwriting segments.  

For the delta_lognormal model of Plamondon [11], the 

curvilinear velocity of an appropriate handwriting script is 

approximated by a set of delta_lognormal profiles, assuming 

that the cumulative time delays are saved for different 

samples of the neuromuscular system acting in the 

production of a rapid movement. 
In Schomaker model [2], a neural network model is 

proposed wherein a network of oscillators outputs horizontal 
and vertical pen tip coordinates x(t) and y(t). Network 
training, performed using a variation of rule, leads to 
uncertain results: the model performance depended critically 
on network parameters. Despite of the lacks of the 
performance of the model, Schomaker’s work clearly 
explains certain questions related to any possible 
handwriting model. Consequently, the handwriting process 
and therefore its model must have four basic phases both in 
sequencing and shaping of handwriting [2]: 

1. System configuration: this step is differently identified 
as motor programming, coordinative structure gearing, 
preparation, planning. 
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2. Start of pattern: after configuring the system for the 
task to perform, there must be a signal releaseing the pattern 
at the right time.  

3. Execution of Pattern: the time of this phase and events 
that are accomplished depend on parameters such as quantity 
of time elapsed, the distance from a spatial target position or 
force target value, or even the number of motor patterns 
generated. 

4. End of pattern: this stage deals with the termination of 
the movement. 

More recently, Kalverama [6] proposed a handwriting 

model consisting on resolving stroke data to their Fourier 

components. This mathematical operation is described 

basing on “central target pattern generation”. This model 

suffers from several drawbacks. As a handwritten stroke, 

corresponding to a real motor sequence, has a finite duration 

the dynamic system adopted for its generation must be 

properly initiated and terminated. Fourier decomposition 

supposes an oscillators set having an initial state, prepared 

with accurate phase-relationship. In presence of a huge 

oscillator’s network, the initial state preparation can be a 

research challenge in itself, to achieve an accurate stroke 

learning, acquisition and production. These issues are not 

addressed in [6] which assume a prepared initial state. 

Another drawback is that in [6] a separate network has to be 

trained for every stroke. 
The goal of the Gangadhar model [9] [12] is to have a 

stable cadence in an oscillators network, and to resolve the 
stroke output under its Fourier components, in terms of 
oscillatory behavior of the oscillator’s network. The 
considered network for strokes generation has 3 layers:  
input layer, oscillatory layer, and output layer. Each neuron 
in the input layer represents a separate stroke. Under relaxing 
conditions, all inputs are in a ‘low’ (0) state. To generate a 
stroke, the corresponding input line is set to a ‘high’ (1) 
state, and maintained in that state during the stroke 
execution. The oscillatory layer is composed of some 
sublayers. Neurons belonging to the same sublayer, which 
are connected in a ring topology, have the same oscillation 
frequency. Output layer has two outputs representing 
horizontal and vertical velocities (Ux and Uy ) of the pen tip. 
Each neuron of the output layer is connected to all the 
oscillators in the oscillator layer. Events related to the above 
3-layered network are managed by a timing network. In our 
view the Gangadhar model [9] has several drawback and 
ambiguity: first of all we can’t understand the nature of the 
input of the network. Secondly the preparation of the initial 
stat of the ring topology chosen it can be a challenge in itself. 
Finally Gangadhar use a simple mathematical operation to 
generate pen tip coordinates x(t) and y(t).  

The main contributions in this paper are: the use of the 
Beta-elliptic model for features extraction giving a full 
description in static and kinematic field for handwriting. 
Secondly is the generation of x(t) and y(t) unlike the 
Gangadhar model [9] that generates velocities (Ux and Uy) 
and then with a mathematical operation it generates x(t) and 
y(t). 

The outline of the paper is as follows: in section 2, we 
present our model for handwriting generation which contains 
two steps. In the first part we present the Beta elliptic model 
for features extraction. In the second part a mechanism for 
preparing the initial state of the network, training, and 
validation procedures are described. In section 3, simulation 
results are presented. 

II. THE PROPOSED MODEL 

The proposed model is interested to online handwriting 
and inspired from the Beta-elliptic model for the analysis of 
complex handwriting movements. In that case, a simple 
stroke is approximated by a Beta profile in the dynamic 
domain which corresponds in turn to an elliptic arc in the 
trajectory domain. In addition, a stroke executed from an 
arbitrary starting position is characterized by ten parameters. 
The first five parameters reflect the timing properties of the 
neuromuscular networks involved in generating the 
movement, whereas the last five parameters describe the 
geometric properties of the generated trace. As shown in 
Fig.1, these characteristics are used as input for the neural 
network to generate the initial script. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A. The Beta-elliptic model for handwriting features 

extraction  

The beta-elliptic model is based on some assumptions: 
Firstly, it considers that handwriting movement, like any 
other highly skilled motor process, is partially programmed 
in advance. Secondly, it supposes that movements are 
represented and planned in the velocity domain since the 
most widely accepted invariant in movement generation is 
the beta function of the velocity profiles. In its simplest form, 
the model is based on a beta equation !(t, t0, t1, tc, p, q) where 
t0 is the starting time, t1 is the ending time, p and q are 
intermediate parameters, as shown in (1). This equation 
describes the velocity profile in the kinematics domain which 
is in turn represented by an elliptic arc that characterizes the 
trajectory in the static domain [13] [14] [15] [16] [17] [18]. 
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Initial script 

Beta-elliptic model for handwriting features extraction  

Neural network model for handwriting generation 

Generated script 

Data (x, y) 

Figure 1.  The architecture of the handwriting generation model. 
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p, q, t0<t1 ∈ R

  

", ) $ 0 "' 1 2% 0 "&$ 1 %  (2) 

 

The curvilinear velocity is given by (3). 

34!"( ) !!56 5"7 (8 1 !59 5"7 (8(' 8:  (3) 

 The Beta-parameters (tc, ∆= t1- tc, p, q, H: Beta 

amplitude) are presented in the Fig.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The elliptic-parameters (x0, y0, a, b, ") describe the static 

aspect of the handwriting movement; a: large axe of ellipse, 

b: small axe of ellipse, and x0 and y0 correspond to the 

coordinates of the ellipse centre O (Fig.3).   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The deviation angle " is formed by the ellipse and the 

horizontal axe, and obtained by the (4).    

; ) <=>"<?@ A!9' + 9&(!6'+6&( B (4) 

Basing on the Beta-elliptic model for handwriting 

features extraction, in the segmentation step each script is 

modeled in the dynamic domain by a series of Beta profiles 

and in the static domain by a series of elliptic arcs. These 

latter’s represent the set of strokes composing the script.   
To approximate a simple movement called stroke the 

Beta-elliptic model produce a set of ten parameters that 
describes the movement in both domains dynamic and static. 
Then for each elliptic arc we have ten parameters (tc, p, q, t0, 
t1, a, b, x0, y0, "). Unlike Gangadhar model these features will 
be used as input for our neural network for handwriting 
generation.  

B. The neural network architecture 

The architecture of our network that learns to generate 
scripts has 3 layers: input layer, hidden layers and Output 
layer (Fig.4).  

1) Input layer: The input layer contains 11 neurones, 10 
neurones for the Beta-elliptic features (the static features 
given by elliptic equation and the dynamic features given by 
Beta equation). Also we use one neurone for the timing 
network. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The timing network acts as a synchronizer between the 

network input and output. In our model and in the extraction 

features stage every stroke was characterized with a set of 

beta profile and set of elliptic arc. Each pair (beta profile, 

elliptic arc) belongs to a time interval [t0, t1]. The timing 

network duplicates the features given by each couple (Beta 

profile, elliptic arc) in the corresponding time interval. 

Duplication is done so that each point (x(t), y(t)) of the 

network output matches an input (the beta elliptic features) 

at time t. 
2) Hidden layers: From table I it is clear that 

minimization of the training error corresponding to the 
learning algorithm is varied as a function of increasing the 
number of hidden layers and increasing the number of 

Figure 2.  The different Beta-parameters. 

Figure 3.  The different elliptic parameters. 
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Figure 4.  Neural network architecture. 
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neurons per hidden layer. From this table we have chosen 
network architecture with 4 hidden layers and for each layer 
we use 10 neurons. 

 

 
             Nh  

Nn 

1 2 3 4 

5 6.2 3.8 10-1 6.5 10-2 2.7 10-3 

10 2.5 10-2 5.2 10-3 4.7 10-4 4.2 10-5

 
Nh: Number of hidden layers. 

Nn: number of neuron per hidden layer. 
3) Output layer: This layer contains two neurons that 

represent the coordinates of pen tip motion (x(t), y(t)). The 
pen tip coordinates estimated by the network are expressed 
as weighted sum of the outputs of neurons in the hidden 
layer.                                                                                           

4) Calculation of mean error: The Backpropagation 
algorithm is used to train our network. The mean error 
shown in the Fig.5 is calculated using the (5). 

 

C ) '
8D E!FGH + 6H(8 1 IFJH + 9HK8LMHN'  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Where, FGH  and 6H are the i th points in the desired and 
actual x(t) of the stroke respectively. Similarly subscript yi 
indicates y(t). E is the average reconstruction error in stroke; 
K is the number of points in the stroke. 

III. SIMULATION RESULTS 

To test the performance of our model we use the 

“Mayastoroun” database [19]. This database contains a large 

variability of handwriting scripts, and written by many 

writers. It contains 5000 isolated digits, more than 13036 

isolated lower and upper case letters, and 35017 isolated 

words from a 500 word lexicon (English, French and 

Arabic) are collected using digitizing tablet. To train our 

neural network we use 1000 scripts (digits, Latin and Arabic 

words and letters) for learning and 500 scripts for test. 

These scripts are represented by pen tip coordinates, x(t) and 

y(t). Simulation results are given in the following figures 

(Fig.6, Fig.7, Fig.8, Fig.9 and Fig.10), where depicted 

respectively the initial scripts (a) and generated script (b) of 

the digit “9”, the Latin letter  “z”, the Latin word “un”, the 

Arabic word “"#$” and the Latin word “classe”. We remark 

good agreement between initial scripts and the scripts 

produced with the neural network for handwriting 

generation. In the applied domain, the potential of the 

present model to generate synthetic handwriting can 

probably be exploited as a generator of “handwritten 

CAPTCHAs” [20]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I.   MEAN ERROR TABLE 

(5)

Figure 5.  Training error corresponding to learning algorithm Plain 

Back propagation. 

(a) (b)

Figure 6.  (a) the original scripts and (b) the generated scripts of the 

digit ‘9’. 

Figure 7.  (a) the original scripts and (b) the generated scripts of the 

letter ‘z’. 

(a) (b)

Figure 8.  (a) the original scripts and (b) the generated scripts of the 

word ’un’. 

(a) (b)
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1) Similarity degree measure: The similarity degree 

between the original script and the generated script is 
measured with (6): 

OIOP# OQK ) R + SD I6HP + 6HQK8 1 I9HP + 9HQK8THN'
U?  

(6)

 

Where: 

S(So,Sg) is the similarity degree between original script (So) 

and generated script (Sg). 

(xoi,yoi) are the coordinates of the ith point in the original 

script. 

(xgi,ygi) are the coordinates of the ith point in the generated 

script. 

n is the number of points of the original script.  

We note that: 

1. S(So,Sg)∈ [0, 1] 

2. S(So,Sg)= 1   So=Sg 

3. S(So,Sg)= α  Sg (generated script) is similar with α 

degree to the So (original script).  
From table II we note that the generated scripts are 

similar with a degree of the order of 0,8 to the original 
scripts. We conclude that the neural network can generate 
scripts with acceptable performance. These results can be 
ameliorated (increase the similarity degree) by considering a 
more large learning data base. 
 

 

 

 

 

Scripts The similarity degree 

Digit ‘9’ 0.8231 

Letter  ‘z’ 0.8342 

Word ‘un’ 0.8104 

Word ‘"#$’ 0.8067 

Word ‘classe’ 0.8020 

 

IV. CONCLUSION 

In this paper we present a neural network model of 
handwritten script generation in which script velocity is 
expressed as a Beta-elliptic characteristics. This 
characteristics was used as input for the neural network to 
generate the script pen tip coordinates, x(t) and y(t). Our 
proposed model is successfully tested on the considered 
database formed with Latin and Arabic letters and digits. To 
this end, the present model has to be trained on a large 
database of online cursive data. The model can also be 
trained on data from a speci%c individual. 
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