
Stroke Segmentation and Recognition from Bangla Online Handwritten Text

Nilanjana Bhattacharya

Bose Institute

Kolkata, India

nilibht@gmail.com

Umapada Pal

Computer Vision and Pattern Recognition Unit

Indian Statistical Institute

Kolkata, India

umapada@isical.ac.in

 Abstract—This paper deals with recognition of online

handwritten Bangla (Bengali) text. Here, at first, we segment

cursive words into strokes. A stroke may represent a

character or a part of a character. We selected a set of

Bangla words written by different groups of people such that

they contain all basic characters, all vowel and consonant

modifiers and almost all types of possible joining among

them. For segmentation of text into strokes, we discovered

some rules analyzing different joining patterns of Bangla

characters. Combination of online and offline information

was used for segmentation. We achieved correct

segmentation rate of 97.89% on the dataset. We manually

analyzed different strokes to create a ground truth set of

distinct stroke classes for result verification and we obtained

85 stroke classes. Directional features were used in SVM for

recognition and we achieved correct stroke recognition rate

of 97.68%.

Keywords-Online character segmentation, online

recognition, handwriting recognition, Bangla script, Indian

text.

I. INTRODUCTION

Handwriting recognition is a difficult task because of
the variability involved in the writing styles of different
individuals. Writing two or more characters by a single
stroke is another difficulty for online character recognition.
Segmentation is one of the important phases of
handwriting recognition in which data are represented at
character or stroke level so that nature of each character or
stroke can be studied individually. A number of studies [1-
2] have been done for offline recognition of printed Indian
scripts like Bangla, Devanagari, Gurmukhi, Tamil, Telugu,
Oriya, etc. Some works are available in segmentation of
offline Bangla handwriting [3-5]. In the earliest available
work on segmentation of handwritten cursive Bangla
words [3], a recursive contour following approach was
proposed. In [4], water reservoir principle based technique
was used for segmentation of handwritten Bangla word
images, where the “water reservoirs” were considered as
the cavities between two consecutive characters. A fuzzy
feature based segmentation technique for Bangla word
images was proposed in [5].

Both segmentation as well as recognition of online
Bangla handwriting is yet to get full attention from
researchers. Some works are available on online isolated
Bangla character/numeral recognition in [6-10]. In [11],

handwritten words were segmented estimating the position
of headline of the word. Preprocessing operations such as
smoothing and re-sampling of points were done before
feature extraction. They used 77 features considering 9
chain-code directions. Modified quadratic discriminant
function (MQDF) classifier was used for recognition. In
[12], the authors used sub-stroke segmentation before
recognition. They divided each stroke of the preprocessed
word sample into several sub-strokes using the angle
incurred while writing. We think, because of vast
variability of Bangla writing styles, we can have different
sub-strokes from different handwritings for a single stroke.

An approach for stroke segmentation and recognition
from Bangla online handwritten text is proposed here. The
algorithm is robust against various types of stroke
connections as well as shape variations. For segmentation
of text into strokes, we discovered some rules analyzing
different joining patterns of Bangla characters.
Combination of online and offline information was used
for segmentation. We manually analyzed different strokes
and obtained 85 distinct stroke classes. Directional features
of 64 dimensions are extracted to recognize the segmented
strokes using SVM classifier.

 The rest of our paper is organized as follows. In
Section II, we discuss some properties of the Bangla script.
Data collection is described in Section III followed by
segmentation algorithm in Section IV. Stroke analysis, and
feature extraction and classification are described in
Section V and VI, respectively. The experimental results
are discussed in Section VII. Finally, conclusion is given
in Section VIII.

II. PROPERTIES OF BANGLA

 Bangla is the second most popular language in India

and the fifth most popular language in the world. More

than 200 million people speak in Bangla and Bangla script

is used in Assamese and Manipuri languages in addition

to Bangla language. The set of basic characters of Bangla

consists of 11 vowels and 39 consonants. As a result,

there are 50 different shapes in the Bangla basic character

set. The concept of upper/lower case is absent in this

script. Fig. 1 shows ideal (printed) forms of these 50 basic

character shapes.
In Bangla, a vowel (except for the first vowel) can take

modified form and we call it a vowel modifier. Ideal

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.275

736

(printed) shapes of these vowel modifiers corresponding to
10 vowels with a basic character KA are shown in fig. 2.
Similarly consonants can also take modified form. Fig. 3
shows consonant modifiers with a basic character BA.

(A) (AA) (I) (II) (U) (UU) (R) (E) (AI) (O) (AU)

(KA) (KHA) (GA) (GHA) (NGA) (CA) (CHA) (JA) (JHA) (NYA)

(TTA) (TTHA) (DDA) (DDHA) (NNA) (TA) (THA) (DA) (DHA) (NA)

(PA) (PHA) (BA) (BHA) (MA) (YY) (RA) (LA) (SHA) (SSA)

(SA) (HA) (RRA) (DHRA) (YYA) (KHN) (ANS) (VISRG) (BINDU)

Figure 1. Bangla basic characters (vowels are in green, consonants in

brown) and their respective codes for future reference.

 (AA) (I) (II) (U) (UU) (R) (E) (AI) (O) (AU)

Figure 2. Vowel modifiers of Bangla and their respective codes with

basic character KA.

 (BA+YA) (BA+R) (BA+RR)

Figure 3. Consonant modifiers of Bangla and their respective codes

with basic character BA.

Unconstrained Bangla handwriting is usually cursive.
In one stroke (a stroke is a collection of points from pen
down to pen up), writer can write a part of a character or
one or more characters. In our experiment we found that a
single stroke may contain upto 4 characters and 2
modifiers. Also in Bangla, the most of the touchings of
characters in a word occur in the region of word’s headline
or sirorekha portion [1] in contrast to English handwriting
where the touchings occur in the lower part of the word
shape.

On the other hand, several single characters are written
in variety of ways – in a single stroke or in more than one
stroke. From statistical analysis it is found that the
minimum number of stroke used to write a Bangla

character is 1 and maximum number is 6. Hence online
recognition of Bangla is a difficult task.

III. DATA COLLECTION AND GROUND TRUTH

GENERATION

A set of 2000 Bangla words written by 50 writers were
collected using Wacom tablet. No restriction was imposed
on writing except that they were requested to use all basic
characters, all vowel and consonant modifiers in their
words. Input data consist of (x, y) coordinates along the
trajectory of the pen together with positions of pen-downs
(stroke starting points).

We have built a text file with ground truths of
segmentation for all input word files. Each row of this file
contains input filename, number of ideal segmentation
points and their x, y co-ordinates. For each input file,
output segmentation points are compared with ground-
truth-file and accuracy is automatically calculated without
manual intervention. Similarly ground truth file is created
for automatic recognition accuracy calculation. Each row
of this file contains input filename, stroke ids of segmented
strokes.

IV. PROPOSED SEGMENTATION APPROACH

For better segmentation, combination of online and
offline information has been used here. Except for vowel
modifiers U, UU, R and consonant modifier RR, touchings
occur mostly in the upper portion of the word. Considering
this fact our segmentation steps are as follows.

A. Segmentation steps

1) Make an offline word image from online input data

file.

2) Find horizontal histogram of the offline image.

3) Identify approximate busy zone from the horizontal

histogram (Busy-zone of a word is the region of the

word where most of the character parts lie.). Busy

zone is defined by two lines- TOP_LINE and

BOTTOM_LINE (fig. 4). Now we define up and

down zones. From topmost row of the word to

(TOP_LINE + t1) row is up zone and (TOP_LINE

+ t2) row to down most row of the word is down

zone. Here, t1=height of busy zone/3. t2= height of

busy zone/2. Height of busy zone=

BOTTOM_LINE - TOP_LINE.

4) Describe all points as up, down or don’t know

points according to their belonging to up zone,

down zone or outside these zones. From now, we

consider only up and down points.

5) If the pen tip goes from down zone to up zone and

then again come to down zone, two characters or

modifiers may be touching in the up zone and

hence the stroke should be segmented (fig. 5).

Because of this, for each stroke, we find patterns

like “down->up->down”, i.e. “any number of down

points followed by any number of up points

737

followed by any number of down points” within

the stroke. For such pattern, we segment at the

highest point of up zone of the touching. We call

such segmentation point as candidate segmentation

point. For each stroke we can get zero, one or more

than one such candidate points.

6) For “down->up->down” stroke, from the first

“down”, find down most point. From second

“down” also find the down most point. Find the

point with higher row value among these two

points. Call it “HIGHER_DOWN”.

7) Validate the candidate points. Using positional

information and stroke pattern, two levels of

validations are performed here. Detailed

description of validation of candidate points is

provided below.

Figure 4. TOP_LINE and BOTTOM_LINE of busy zone for 2

samples.

Figure 5. Touching of AA and MA (up->down->up->down->up form).

B. Validation of candidate points at Level-1

This validation is done to check the position of the
candidate point with respect to the position of
HIGHER_DOWN, BOTTOM_LINE of busy zone, and
also with respect to stroke height to avoid incorrect over-
segmentation. The following four conditions are tested:

1) r(HIGHER_DOWN) & r(candidate point) > (height

of busy zone*40%)

2) r(HIGHER_DOWN) & r(candidate point) > (height

of the stroke*30%)

3) r(BOTTOM_LINE) & r(candidate point) > (height

of busy zone*60%)

4) r(down most point of the stroke) & r(candidate

point) > (height of the stroke*40%)
where r(x) means row value of x.
If all of these 4 conditions are satisfied by the

candidate segmentation point, it is a valid segmentation
point.

C. Validation of candidate points at Level-2

We implement some rules which we discovered by
analyzing stroke patterns of Bangla writing. Our
observations are as follows:

Case A: As Bangla writing goes from left to right, end
point of a stroke consisting of more than one character is
always at the right side of the start point.
Case B: If the stroke consists of only a character or a part
of a character this relationship between start point and end
point does not always hold.

As we want to segment the strokes which consists of
more than one character, we will consider only case-A for
segmentation. So our segmentation rules are as follows:
a) End point of a connected stroke should be at the right

side of start point of the stroke, i.e. c(end point) >

c(start point), where c(x) means column value of x.

Otherwise, candidate segmentation point is cancelled.

b) End point of a connected stroke should be at the right

side of previous validated segmentation point of the

stroke, i.e. c(end point) > c(previous segmentation

point). Otherwise, candidate segmentation point is

cancelled.

c) Any candidate segmentation point (except for the

first one) should be at the right side of previous

candidate segmentation point of the stroke, i.e.

c(candidate segmentation point) > c(previous

candidate segmentation point). Otherwise, previous

candidate segmentation point is marked to be deleted.
These rules prevent over-segmentation of 15 characters
having codes: A, AA, BHA, TA, E, AI, NYA, U, UU, JA,
DDA, RRA, NGA, O and AU.

Examples of some of the results obtained before and
after Level-2 validation are shown in fig. 6-8. Different
strokes of input word are depicted in different colors and
the segmentation points are shown in red on the strokes.

Three modifiers II, AU and YA may go from right to
left. A stroke containing these may not be segmented
because of the above validations. (fig. 9). So we check
whether the latest “down” portion of the stroke goes under
the start point or previous segmentation point of the stroke.
If yes (true for the 15 characters specified above and
modifier YA), candidate segmentation point is cancelled.
If no (for modifiers II and AU), candidate segmentation
point is valid. For modifier YA, another checking is
necessary. We check the length L of the stroke from start
point or previous segmentation point to the point just
before the last “down” portion of the stroke. Since the
combined length of character and YA should be greater
than the length of part of a character, if L is greater than a
threshold, candidate segmentation point is valid. The
threshold is found empirically. Fig. 10 shows corrected
results after these checking.

(i) (ii)

Figure 6. (i) Before applying Rule-(a): A is over-segmented. Start point

is indicated by an arrow. (ii) After applying Rule-(a).

738

(i) (ii)

Figure 7. (i) Before applying Rule-(b): NGA is over-segmented. (ii)

After applying Rule-(b).

(i) (ii)

Figure 8. (i) Before applying Rule-(c), (ii) After applying Rule-(c).

(i) (ii)

Figure 9. Errors introduced by validations for modifiers AU and YA:

words are under- segmented.

(i) (ii)

Figure 10. Corrected results obtained: here both the words of fig. 9 are

properly segmented.

V. STROKE ANALYSIS

At first we have done a general analysis on Bangla
alphabet to find the number of stroke classes which are
sufficient to cover all characters and modifiers. If parts of
different characters look similar, they are assigned with a
single stroke-id. On the other hand, stroke classes
representing one particular character differ from writer to
writer. For example, fig. 11(ii) and fig. 11(iv) shows two
GAs written by different writers. The left stroke of first
GA (fig. 11(ii)) is similar to the right stroke of KA (fig.
11(i)). Also the left stroke of second GA (fig. 11(iv)) is

similar to the left stroke in SA (fig. 11(iii)). Hence, in the
ground truth file, their codes are also considered similar.

Next we analyze the stroke classes with respect to our
segmentation algorithm. We get 11 additional stroke
classes because of over-segmentation. If we consider all
types of joining between characters and modifiers, we find
that some characters can be joined with vowel modifiers
like U, UU, R and consonant modifiers like R, RR within a
single stroke. As we do not try to segment these modifiers
from characters, we consider these joined strokes as
separate stroke classes. Finally, we find the set of 85
distinct stroke classes. A few examples of stroke classes
are given in fig. 12. Table I shows the characters in which
these strokes are used.

 (i) (ii) (iii) (iv)

Figure 11. (i) KA, (ii) GA, (iii) SA, (iv) GA. Right (black) stroke of KA

and left (black) stroke of GA in (ii) are the same. Left (green) stroke of

SA and left (black) stroke of GA in (iv) are the same.

(a) (b) (c) (d) (e)

Figure 12. Examples of some stroke classes.

TABLE I. STROKES OF FIG. 12 AND THEIR RESPECTIVE

CHARACTERS

Stroke of fig. 12 Characters in which the stroke is used

(a) A, NA, NNA, LA, JHA, R.

(b) KA, PHA, ANUS, GA.

(c) O, AU, NYA, GA with modifier U, SHA with

modifier U.

(d) YY, YYA, SSA, PHA, KHA, THA.

(e) DDA, RRA, U, UU, JA.

VI. FEATURE EXTRACTION AND CLASSIFICATION

We use 64-dimensional feature vector for high-speed
stroke recognition. Each stroke is divided into 4x4 cells,
i.e. 16 cells and frequencies of the direction codes are
computed in these cells. We use chain code of four
directions only [0 (horizontal), 1 (+45 degrees from
positive x-axis), 2 (vertical) and 3 (+135 degrees from
positive x-axis)]. Fig. 13 illustrates chain code directions.
We assume chain code of direction 0 and 4, 1 and 5, 2 and
6, 3 and 7, are the same because we find that strokes of
characters BA, LA, PA, GA and modifiers E, II, AU, R
(consonant) can be written with different orders of pen
points within the stroke making the directions just
opposite. Thus, for each cell we get four integer values
representing the histograms of the four direction codes.
Thus 16x4=64 features are found for each stroke. These

739

features are normalized by dividing by the maximum
value.

Figure 13. Chain code directions for feature computation.

In our experiment, we have used a Support Vector
Machine (SVM) classifier. The SVM is originally defined
for two-class problems and it looks for the optimal hyper
plane which maximizes the distance and the margin,
between the nearest examples of both classes, named
support vectors (SVs). Given a training database of M
data: {xm| m=1... M}, the linear SVM classifier is then
defined as:

bxxxf j

j

j +⋅= α)(

where {xj} is the set of support vectors and the

parameters αj and b have been determined by solving the
quadratic problem [13]. The linear SVM can be extended
to various non-linear variants; details can be found in [13,
14]. In our experiments, the Gaussian kernel SVM
outperformed other non-linear SVM kernels, hence we
report our recognition results based on the Gaussian kernel
only. Since SVM is available elsewhere, we do not
present the details of SVM here.

We have a total number of 10,896 stroke samples. 50%
of these samples are used for training and rest for testing.

VII. RESULTS AND DISCUSSIONS

Detailed segmentation result is given in Table II. We
noted that 97.89% of the strokes are segmented correctly.
Fig. 14 shows a few examples of correctly segmented
strokes while fig. 15 shows some examples of incorrectly
segmented strokes. In fig. 15(i), modifier AA is not
segmented because its height is small and it does not reach
the down zone. In fig. 15(ii), modifier I is not segmented
because it does not reach the down zone. In fig. 15(iii),
character NA is over-segmented because it reaches from
down zone to up zone and then it comes to down zone.
This part of NA should not reach the up zone in ideal case.
Similarly, in fig. 15(iv), character CHA is over-segmented
as it reaches the up zone.

 Recognition result is given in Table III. From the
experiment on 5,448 test samples we obtained 97.68%
stroke recognition accuracy. Sample set of 85 stroke
classes includes whole characters as well as part of
characters. Characters GHA, YY, THA, KHA, PHA look
very similar and hence generate some misclassifications.
Similarly, CA and DDHA look very similar and generate
some errors.

 To get idea about the performance of our method,
we report here some of the published results. In [10],
authors reported basic character recognition accuracy of

81.55% (using point-float feature in HMM) to 91.01%
(using chain-code feature in Nearest Neighbour classifier)
on 8,616 test character samples where samples include 50
basic characters. In [11], authors selected a lexicon of 100
Bangla words and reported that 3.1% of the strokes
segmented suffered from under segmentation. Only
properly segmented strokes were used for training and
testing of the classifier. Recognition error obtained was
1.22% at stroke level considering 73 stroke classes. In
[12], authors reported recognition accuracy of 88% (for
holistic recognition) to 93.1% (for context dependent
recognition) on 6,516 test word samples where samples
include 50 Indian city names.

TABLE II. DETAILED SEGMENTATION RESULT

Number of

ideal

segmentation

points

Number

of points

under-

segmented

Number of

points

correctly

segmented

Number of

points causing

over-

segmentation

2698 57 (2.11%) 2641 (97.89%) 532 (16.47%)

TABLE III. STROKE RECOGNITION RESULT

Average Recognition rate Average Error rate

97.68% 2.32%

(i)
 (ii) (iii)

(iv) (v) (vi)

Figure 14. Examples of words which are correctly segmented.

(i) (ii) (iii) (iv)

Figure 15. Examples of words which are not segmented correctly (first

two words are under segmented, next two words are over segmented).

Arrows indicate the positions where under-segmentations and over-

segmentations have occurred.

740

VIII. CONCLUSION

This paper deals with a rule-based scheme to segment
online handwritten Bangla (Bengali) cursive words into
strokes. It also deals with recognition of the segmented
strokes where directional features are used in SVM
classifier. Both offline and online information were used
for segmentation. Different writing rules of Bangla helped
us to validate the candidate points. We obtained stroke
segmentation rate of 97.89% from our dataset. From 85
distinct stroke classes, we obtained 97.68% accuracy in
stroke recognition without using any pre-processing
scheme. Our dataset along with ground truth files will be
available for research purpose.

REFERENCES

[1] U. Pal, R. Jayadevan, and N. Sharma, “Handwriting
Recognition in Indian Regional Scripts: A Survey of Offline
Techniques”, ACM Trans. Asian Lang. Inf. Process. 11(1): 1,
2012.

[2] R. Jayadevan, S. R. Kolhe, P. M. Patil, and U. Pal, “Offline
Recognition of Devanagari Script: A Survey”, IEEE
Transactions on Systems, Man, and Cybernetics, Part C
41(6): 782-796, 2011.

[3] A. Bishnu and B. B. Chaudhuri, “Segmentation of Bangla
handwritten text into characters by recursive contour following,” in
Proc. Int. Conf. on Document Analysis and Recognition, 1999, pp.
402–405.

[4] U. Pal and S. Datta, “Segmentation of Bangla Unconstrained
Handwritten text,” In Proc. 7th ICDAR, pp. 1128-1132, 2003.

[5] S. Basu, R. Sarkar, N. Das, M. Kundu, M. Nasipuri, and D. K.
Basu, “A fuzzy technique for segmentation of handwritten Bangla
word images,” in Int. Conf. on Computer: Theory and Application,
2007, pp. 427–433.

[6] U. Garain, B. B. Chaudhuri, and T. Pal, “Online Handwritten
Indian Script Recognition: A Human Motor Function Based
Framework,” In Proc. 16th Int. Conf. on Pattern Recognition, pp.
164-167, 2002.

[7] K. Roy and N. Sharma, T. Pal, and U. Pal, “Online Bangla
Handwriting Recognition System” , In Proc. 6th International
Conference on Advances in Pattern Recognition, pp. 121-126,
2007.

[8] S. K. Parui, U. Bhattacharya, B. Shaw, and K. Guin, “A Hidden
Markov Models for Recognition of Online Handwritten Bangla
Numerals”, Proceedings of the 41st National Annual Convention
of Computer Society of India, India, pp 27-31, 2006.

[9] U. Bhattacharya, B. K. Gupta, and S. K. Parui, “Direction Code
Based Features for Recognition of Online Handwritten Characters
of Bangla”, Proc. of the 9th ICDAR, vol. 1, pp. 58-62, 2007.

[10] T. Mondal, U. Bhattacharya, S. K. Parui, and K. Das, "On-line
handwriting recognition of Indian scripts – the first benchmark",
12th International Conference on Frontiers in Handwriting
Recognition, 2010, pp. 200-205.

[11] U. Bhattacharya, A. Nigam, Y. S. Rawat and S. K. Parui, An
analytic scheme for online handwritten Bangla cursive word
recognition. Proc. of the 11th ICFHR, pp. 320-325, 2008.

[12] Gernot A. Fink, Szil´ard Vajda, Ujjwal Bhattacharya, Swapan K.
Parui, and Bidyut B. Chaudhuri, "Online Bangla Word
Recognition Using Sub-Stroke Level Features and Hidden Markov
Models", 12th International Conference on Frontiers in
Handwriting Recognition, 2010, pp. 393-398.

[13] V.Vapnik, "The Nature of Statistical Learning Theory ", Springer
Verlang, 1995.

[14] C. Burges, “A Tutorial on support Vector machines for pattern
recognition”, Data mining and knowledge discovery, pp.1-43,
1998.

741

