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 Abstract—This paper deals with recognition of online 

handwritten Bangla (Bengali) text. Here, at first, we segment 

cursive words into strokes. A stroke may represent a 

character or a part of a character. We selected a set of 

Bangla words written by different groups of people such that 

they contain all basic characters, all vowel and consonant 

modifiers and almost all types of possible joining among 

them. For segmentation of text into strokes, we discovered 

some rules analyzing different joining patterns of Bangla 

characters. Combination of online and offline information 

was used for segmentation. We achieved correct 

segmentation rate of 97.89% on the dataset. We manually 

analyzed different strokes to create a ground truth set of 

distinct stroke classes for result verification and we obtained 

85 stroke classes. Directional features were used in SVM for 

recognition and we achieved correct stroke recognition rate 

of 97.68%. 

 

Keywords-Online character segmentation, online 

recognition, handwriting recognition, Bangla script, Indian 

text. 

I.  INTRODUCTION 

Handwriting recognition is a difficult task because of 
the variability involved in the writing styles of different 
individuals. Writing two or more characters by a single 
stroke is another difficulty for online character recognition.  
Segmentation is one of the important phases of 
handwriting recognition in which data are represented at 
character or stroke level so that nature of each character or 
stroke can be studied individually. A number of studies [1-
2] have been done for offline recognition of printed Indian 
scripts like Bangla, Devanagari, Gurmukhi, Tamil, Telugu, 
Oriya, etc. Some works are available in segmentation of 
offline Bangla handwriting [3-5]. In the earliest available 
work on segmentation of handwritten cursive Bangla 
words [3], a recursive contour following approach was 
proposed. In [4], water reservoir principle based technique 
was used for segmentation of handwritten Bangla word 
images, where the “water reservoirs” were considered as 
the cavities between two consecutive characters. A fuzzy 
feature based segmentation technique for Bangla word 
images was proposed in [5].  

Both segmentation as well as recognition of online 
Bangla handwriting is yet to get full attention from 
researchers. Some works are available on online isolated 
Bangla character/numeral recognition in [6-10].  In [11], 

handwritten words were segmented estimating the position 
of headline of the word. Preprocessing operations such as 
smoothing and re-sampling of points were done before 
feature extraction. They used 77 features considering 9 
chain-code directions. Modified quadratic discriminant 
function (MQDF) classifier was used for recognition. In 
[12], the authors used sub-stroke segmentation before 
recognition. They divided each stroke of the preprocessed 
word sample into several sub-strokes using the angle 
incurred while writing. We think, because of vast 
variability of Bangla writing styles, we can have different 
sub-strokes from different handwritings for a single stroke. 

An approach for stroke segmentation and recognition 
from Bangla online handwritten text is proposed here. The 
algorithm is robust against various types of stroke 
connections as well as shape variations. For segmentation 
of text into strokes, we discovered some rules analyzing 
different joining patterns of Bangla characters. 
Combination of online and offline information was used 
for segmentation. We manually analyzed different strokes 
and obtained 85 distinct stroke classes. Directional features 
of 64 dimensions are extracted to recognize the segmented 
strokes using SVM classifier. 

   The rest of our paper is organized as follows. In 
Section II, we discuss some properties of the Bangla script. 
Data collection is described in Section III followed by 
segmentation algorithm in Section IV. Stroke analysis, and 
feature extraction and classification are described in 
Section V and VI, respectively. The experimental results 
are discussed in Section VII. Finally, conclusion is given 
in Section VIII. 

 

II. PROPERTIES OF BANGLA  

 Bangla is the second most popular language in India 

and the fifth most popular language in the world. More 

than 200 million people speak in Bangla and Bangla script 

is used in Assamese and Manipuri languages in addition 

to Bangla language. The set of basic characters of Bangla 

consists of 11 vowels and 39 consonants. As a result, 

there are 50 different shapes in the Bangla basic character 

set. The concept of upper/lower case is absent in this 

script. Fig. 1 shows ideal (printed) forms of these 50 basic 

character shapes. 
In Bangla, a vowel (except for the first vowel) can take 

modified form and we call it a vowel modifier. Ideal 
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(printed) shapes of these vowel modifiers corresponding to 
10 vowels with a basic character KA are shown in fig. 2. 
Similarly consonants can also take modified form. Fig. 3 
shows consonant modifiers with a basic character BA. 

 

 

(A)  (AA)  (I)  (II)  (U)  (UU)  (R)  (E)  (AI)  (O)  (AU) 

 

(KA) (KHA) (GA) (GHA) (NGA) (CA) (CHA) (JA) (JHA) (NYA) 

 
(TTA) (TTHA) (DDA) (DDHA) (NNA) (TA) (THA) (DA) (DHA) (NA) 

 
(PA) (PHA) (BA) (BHA) (MA) (YY) (RA) (LA) (SHA) (SSA) 

 
(SA) (HA) (RRA) (DHRA) (YYA) (KHN) (ANS) (VISRG) (BINDU) 

Figure 1.  Bangla basic characters (vowels are in green, consonants in 

brown) and their respective codes for future reference. 

 

 

    (AA)   (I)     (II)     (U)     (UU)    (R)    (E)   (AI)      (O)      (AU) 

Figure 2.  Vowel modifiers of Bangla and their respective codes with 

basic character KA. 

 

   

   (BA+YA)  (BA+R)  (BA+RR) 

Figure 3.  Consonant modifiers of Bangla and their respective codes 

with basic character BA. 

Unconstrained Bangla handwriting is usually cursive. 
In one stroke (a stroke is a collection of points from pen 
down to pen up), writer can write a part of a character or 
one or more characters. In our experiment we found that a 
single stroke may contain upto 4 characters and 2 
modifiers. Also in Bangla, the most of the touchings of 
characters in a word occur in the region of word’s headline 
or sirorekha portion [1] in contrast to English handwriting 
where the touchings occur in the lower part of the word 
shape. 

On the other hand, several single characters are written 
in variety of ways – in a single stroke or in more than one 
stroke. From statistical analysis it is found that the 
minimum number of stroke used to write a Bangla 

character is 1 and maximum number is 6. Hence online 
recognition of Bangla is a difficult task. 

III. DATA COLLECTION AND GROUND TRUTH 

GENERATION 

A set of 2000 Bangla words written by 50 writers were 
collected using Wacom tablet. No restriction was imposed 
on writing except that they were requested to use all basic 
characters, all vowel and consonant modifiers in their 
words. Input data consist of (x, y) coordinates along the 
trajectory of the pen together with positions of pen-downs 
(stroke starting points). 

We have built a text file with ground truths of 
segmentation for all input word files. Each row of this file 
contains input filename, number of ideal segmentation 
points and their x, y co-ordinates. For each input file, 
output segmentation points are compared with ground-
truth-file and accuracy is automatically calculated without 
manual intervention. Similarly ground truth file is created 
for automatic recognition accuracy calculation. Each row 
of this file contains input filename, stroke ids of segmented 
strokes. 

IV. PROPOSED SEGMENTATION APPROACH 

For better segmentation, combination of online and 
offline information has been used here. Except for vowel 
modifiers U, UU, R and consonant modifier RR, touchings 
occur mostly in the upper portion of the word. Considering 
this fact our segmentation steps are as follows. 

A. Segmentation steps 

1) Make an offline word image from online input data 

file. 

2) Find horizontal histogram of the offline image. 

3) Identify approximate busy zone from the horizontal 

histogram (Busy-zone of a word is the region of the 

word where most of the character parts lie.). Busy 

zone is defined by two lines- TOP_LINE and 

BOTTOM_LINE (fig. 4). Now we define up and 

down zones. From topmost row of the word to 

(TOP_LINE + t1) row is up zone and (TOP_LINE 

+ t2) row to down most row of the word is down 

zone. Here, t1=height of busy zone/3. t2= height of 

busy zone/2.  Height of busy zone= 

BOTTOM_LINE - TOP_LINE. 

4) Describe all points as up, down or don’t know 

points according to their belonging to up zone, 

down zone or outside these zones. From now, we 

consider only up and down points. 

5) If the pen tip goes from down zone to up zone and 

then again come to down zone, two characters or 

modifiers may be touching in the up zone and 

hence the stroke should be segmented (fig. 5). 

Because of this, for each stroke, we find patterns 

like “down->up->down”, i.e. “any number of down 

points followed by any number of up points 
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followed by any number of down points” within 

the stroke. For such pattern, we segment at the 

highest point of up zone of the touching. We call 

such segmentation point as candidate segmentation 

point. For each stroke we can get zero, one or more 

than one such candidate points. 

6) For “down->up->down” stroke, from the first 

“down”, find down most point. From second 

“down” also find the down most point. Find the 

point with higher row value among these two 

points. Call it “HIGHER_DOWN”.  

7) Validate the candidate points. Using positional 

information and stroke pattern, two levels of 

validations are performed here. Detailed 

description of validation of candidate points is 

provided below.  

 

 
Figure 4.  TOP_LINE and BOTTOM_LINE of busy zone for 2 

samples. 

 

 
Figure 5.  Touching of AA and MA (up->down->up->down->up form). 

     

B. Validation of candidate points at Level-1 

This validation is done to check the position of the 
candidate point with respect to the position of 
HIGHER_DOWN, BOTTOM_LINE of busy zone, and 
also with respect to stroke height to avoid incorrect over-
segmentation. The following four conditions are tested: 

 

1) r(HIGHER_DOWN) & r(candidate point) > (height 

of busy zone*40%) 

2) r(HIGHER_DOWN) & r(candidate point) > (height 

of the stroke*30%) 

3) r(BOTTOM_LINE) & r(candidate point) > (height 

of busy zone*60%) 

4) r(down most point of the stroke) & r(candidate 

point) > (height of the stroke*40%) 
where r(x) means row value of x. 
If all of these 4 conditions are satisfied by the 

candidate segmentation point, it is a valid segmentation 
point. 

C. Validation of candidate points at Level-2 

We implement some rules which we discovered by 
analyzing stroke patterns of Bangla writing. Our 
observations are as follows: 

Case A: As Bangla writing goes from left to right, end 
point of a stroke consisting of more than one character is 
always at the right side of the start point. 
Case B: If the stroke consists of only a character or a part 
of a character this relationship between start point and end 
point does not always hold. 

As we want to segment the strokes which consists of 
more than one character, we will consider only case-A for 
segmentation. So our segmentation rules are as follows:  
a) End point of a connected stroke should be at the right 

side of start point of the stroke, i.e. c(end point) > 

c(start point), where c(x) means column value of x. 

Otherwise, candidate segmentation point is cancelled. 

b) End point of a connected stroke should be at the right 

side of previous validated segmentation point of the 

stroke, i.e. c(end point) > c(previous segmentation 

point). Otherwise, candidate segmentation point is 

cancelled. 

c) Any candidate segmentation point (except for the 

first one) should be at the right side of previous 

candidate segmentation point of the stroke, i.e. 

c(candidate segmentation point) > c(previous 

candidate segmentation point). Otherwise, previous 

candidate segmentation point is marked to be deleted. 
These rules prevent over-segmentation of 15 characters 
having codes: A, AA, BHA, TA, E, AI, NYA, U, UU, JA, 
DDA, RRA, NGA, O and AU.  

Examples of some of the results obtained before and 
after Level-2 validation are shown in fig. 6-8. Different 
strokes of input word are depicted in different colors and 
the segmentation points are shown in red on the strokes. 

Three modifiers II, AU and YA may go from right to 
left. A stroke containing these may not be segmented 
because of the above validations. (fig. 9). So we check 
whether the latest “down” portion of the stroke goes under 
the start point or previous segmentation point of the stroke. 
If yes (true for the 15 characters specified above and 
modifier YA), candidate segmentation point is cancelled. 
If no (for modifiers II and AU), candidate segmentation 
point is valid. For modifier YA, another checking is 
necessary. We check the length L of the stroke from start 
point or previous segmentation point to the point just 
before the last “down” portion of the stroke. Since the 
combined length of character and YA should be greater 
than the length of part of a character, if L is greater than a 
threshold, candidate segmentation point is valid. The 
threshold is found empirically. Fig. 10 shows corrected 
results after these checking. 

 

 
(i)    (ii) 

Figure 6.  (i) Before applying Rule-(a): A is over-segmented. Start point 

is indicated by an arrow. (ii) After applying Rule-(a).  
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(i)    (ii) 

Figure 7.  (i) Before applying Rule-(b): NGA is over-segmented. (ii) 

After applying Rule-(b).  

 

 

(i)    (ii) 

Figure 8.  (i) Before applying Rule-(c), (ii) After applying Rule-(c). 

  
(i)   (ii) 

Figure 9.  Errors introduced by validations for modifiers AU and YA: 

words are under- segmented. 

 

  
(i)   (ii) 

Figure 10.  Corrected results obtained: here both the words of fig. 9 are 

properly segmented. 

 

V. STROKE ANALYSIS 

At first we have done a general analysis on Bangla 
alphabet to find the number of stroke classes which are 
sufficient to cover all characters and modifiers. If parts of 
different characters look similar, they are assigned with a 
single stroke-id. On the other hand, stroke classes 
representing one particular character differ from writer to 
writer. For example, fig. 11(ii) and fig. 11(iv) shows two 
GAs written by different writers. The left stroke of first 
GA (fig. 11(ii)) is similar to the right stroke of KA (fig. 
11(i)). Also the left stroke of second GA (fig. 11(iv)) is 

similar to the left stroke in SA (fig. 11(iii)). Hence, in the 
ground truth file, their codes are also considered similar. 

Next we analyze the stroke classes with respect to our 
segmentation algorithm. We get 11 additional stroke 
classes because of over-segmentation.  If we consider all 
types of joining between characters and modifiers, we find 
that some characters can be joined with vowel modifiers 
like U, UU, R and consonant modifiers like R, RR within a 
single stroke. As we do not try to segment these modifiers 
from characters, we consider these joined strokes as 
separate stroke classes. Finally, we find the set of 85 
distinct stroke classes. A few examples of stroke classes 
are given in fig. 12. Table I shows the characters in which 
these strokes are used. 

 

         
 (i)     (ii)   (iii)   (iv) 

Figure 11.  (i) KA, (ii) GA, (iii) SA, (iv) GA. Right (black) stroke of KA 

and left (black) stroke of GA in (ii) are the same. Left (green) stroke of 

SA and left (black) stroke of GA in (iv) are the same. 

        
(a)        (b)         (c)           (d)          (e) 

Figure 12.  Examples of some stroke classes. 

TABLE I.  STROKES OF FIG. 12 AND THEIR RESPECTIVE 

CHARACTERS 

Stroke of fig. 12 Characters in which the stroke is used 

(a) A, NA, NNA, LA, JHA, R. 

(b) KA, PHA, ANUS, GA. 

(c) O, AU, NYA, GA with modifier U, SHA with 

modifier U. 

(d) YY, YYA, SSA, PHA, KHA, THA. 

(e) DDA, RRA, U, UU, JA. 

 

VI. FEATURE EXTRACTION AND CLASSIFICATION 

We use 64-dimensional feature vector for high-speed 
stroke recognition. Each stroke is divided into 4x4 cells, 
i.e. 16 cells and frequencies of the direction codes are 
computed in these cells. We use chain code of four 
directions only [0 (horizontal), 1 (+45 degrees from 
positive x-axis), 2 (vertical) and 3 (+135 degrees from 
positive x-axis)]. Fig. 13 illustrates chain code directions. 
We assume chain code of direction 0 and 4, 1 and 5, 2 and 
6, 3 and 7, are the same because we find that strokes of 
characters BA, LA, PA, GA and modifiers E, II, AU, R 
(consonant) can be written with different orders of pen 
points within the stroke making the directions just 
opposite. Thus, for each cell we get four integer values 
representing the histograms of the four direction codes. 
Thus 16x4=64 features are found for each stroke. These 
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features are normalized by dividing by the maximum 
value. 

 
Figure 13.  Chain code directions for feature computation. 

In our experiment, we have used a Support Vector 
Machine (SVM) classifier. The SVM is originally defined 
for two-class problems and it looks for the optimal hyper 
plane which maximizes the distance and the margin, 
between the nearest examples of both classes, named 
support vectors (SVs). Given a training database of M 
data: {xm| m=1... M}, the linear SVM classifier is then 
defined as: 

bxxxf j

j

j +⋅= α)(

 

where {xj} is the set of support vectors and the 

parameters αj and b have been determined by solving the 
quadratic problem [13]. The linear SVM can be extended 
to various non-linear variants; details can be found in [13, 
14]. In our experiments, the Gaussian kernel SVM 
outperformed other non-linear SVM kernels, hence we 
report our recognition results based on the Gaussian kernel 
only.  Since SVM is available elsewhere, we do not 
present the details of SVM here. 

We have a total number of 10,896 stroke samples. 50% 
of these samples are used for training and rest for testing. 

VII. RESULTS AND DISCUSSIONS 

Detailed segmentation result is given in Table II. We 
noted that 97.89% of the strokes are segmented correctly. 
Fig. 14 shows a few examples of correctly segmented 
strokes while fig. 15 shows some examples of incorrectly 
segmented strokes. In fig. 15(i), modifier AA is not 
segmented because its height is small and it does not reach 
the down zone. In fig. 15(ii), modifier I is not segmented 
because it does not reach the down zone.  In fig. 15(iii), 
character NA is over-segmented because it reaches from 
down zone to up zone and then it comes to down zone. 
This part of NA should not reach the up zone in ideal case. 
Similarly, in fig. 15(iv), character CHA is over-segmented 
as it reaches the up zone. 

 Recognition result is given in Table III. From the 
experiment on 5,448 test samples we obtained 97.68% 
stroke recognition accuracy.  Sample set of 85 stroke 
classes includes whole characters as well as part of 
characters. Characters GHA, YY, THA, KHA, PHA look 
very similar and hence generate some misclassifications. 
Similarly, CA and DDHA look very similar and generate 
some errors. 

    To get idea about the performance of our method, 
we report here some of the published results. In [10], 
authors reported basic character recognition accuracy of 

81.55% (using point-float feature in HMM) to 91.01% 
(using chain-code feature in Nearest Neighbour classifier) 
on 8,616 test character samples where samples include 50 
basic characters. In [11], authors selected a lexicon of 100 
Bangla words and reported that 3.1% of the strokes 
segmented suffered from under segmentation. Only 
properly segmented strokes were used for training and 
testing of the classifier. Recognition error obtained was 
1.22% at stroke level considering 73 stroke classes. In 
[12], authors reported recognition accuracy of 88% (for 
holistic recognition) to 93.1% (for context dependent 
recognition) on 6,516 test word samples where samples 
include 50 Indian city names. 

TABLE II.  DETAILED SEGMENTATION RESULT 

Number of 

ideal 

segmentation 

points  

Number 

of points 

under- 

segmented 

Number of 

points 

correctly 

segmented 

Number of 

points causing 

over-

segmentation 

2698 57 (2.11%) 2641 (97.89%) 532 (16.47%) 

TABLE III.  STROKE RECOGNITION RESULT 

Average Recognition rate Average Error rate 

97.68% 2.32% 

 

(i)
   (ii)   (iii) 

(iv)   (v)   (vi) 

Figure 14.  Examples of words which are correctly segmented. 

 

 
(i)  (ii)     (iii)       (iv) 

Figure 15.  Examples of words which are not segmented correctly (first 

two words are under segmented, next two words are over segmented). 

Arrows indicate the positions where under-segmentations and over- 

segmentations have occurred. 

740



VIII. CONCLUSION 

This paper deals with a rule-based scheme to segment 
online handwritten Bangla (Bengali) cursive words into 
strokes. It also deals with recognition of the segmented 
strokes where directional features are used in SVM 
classifier. Both offline and online information were used 
for segmentation. Different writing rules of Bangla helped 
us to validate the candidate points. We obtained stroke 
segmentation rate of 97.89% from our dataset.  From 85 
distinct stroke classes, we obtained 97.68% accuracy in 
stroke recognition without using any pre-processing 
scheme. Our dataset along with ground truth files will be 
available for research purpose. 
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