
Recovering Dynamic Stroke Information of Multi-Stroke Handwritten Characters

with Complex Patterns

Takayuki Nagoya

Humanities Center

Tottori University of Environmental Studies

Tottori 689-1111, Japan

Email: nagoya@kankyo-u.ac.jp

Hiroyuki Fujioka

Department of System Management

Fukuoka Institute of Technology

Fukuoka 811-0295, Japan

Email: fujioka@fit.ac.jp

Abstract—In this paper, we consider the problem of recover-
ing dynamic stroke information from multi-stroke handwritten
character images with complex patterns. The characters are
assumed to be of a class of characters whose strokes are
recursively formulated. By employing the so-called graph
theoretic approach, we develop a systematic algorithm for
recovering dynamic stroke information from character images
in the class of our interest. It is shown that the correctness of
algorithm is guaranteed mathematically. Moreover, we show
that the time complexity becomes O(n), where n denotes the
number of stroke-intersections on characters. Some recovery
examples are included.

Keywords-stroke recovery; graph theoretic approach; multi-
stroke handwritten character; recursive formulation

I. INTRODUCTION

Recovering the dynamic stroke information from static

character images is a key problem with wide range appli-

cations of off-line handwritten character recognition (see

e.g.[1]). A standard approach of studying such a problem

is by using the so-called graph theoretic approach (e.g. [2]

and [3]). That is, by representing the input characters as

some undirected graph, the dynamic stroke information is

recovered by analyzing the graph based on the global or

local criteria. Thus, a variety of recovery algorithms have

been developed.

For example, Kato and Yasuhara in [4] have developed

a hybrid-type algorithm using both the global and local

criteria. The time complexity is O(n2), where n denotes

the number of stroke-intersections on characters. However,

the recovery algorithm often fail to recovery the character

strokes with complex pattern – such as the case where

the loop structure of characters recursively contains smaller

ones, etc. Then, one of interesting issues in this regard may

be to reveal a question “What class of characters can or not

be recovered with a minimum set of heuristic rules ?”.

The main purpose of this paper is to explore such a

question based on the Kato and Yasuhara’s work in [4],

so that a class of characters with complex patterns can be

recovered well. Specifically, we consider a class of char-

acters whose strokes are recursively formulated, in which

the class of characters treated in [4] is included. We first

present a recursive formulation of single- and multi-stroke

characters. Based on the results, we develop a systematic

algorithm which can recover dynamic stroke information

from character images in the class of our interest. Then,

it is shown that the correctness of our algorithm is guar-

anteed mathematically. Moreover, we show that the time

complexity of our algorithm becomes O(n). Clearly, our

method improves Kato and Yasuhara’s work [4], and then

may become a powerful tool for the recovery problems of

character stroke. Some recovery examples are included.

This paper is organized as follows. In Section II, we

briefly review some assumptions on the structure of char-

acter images. The formal definition on single- and multi-

strokes is presented in Section III. In Section IV, we show

how a graph model is constructed from a given character

image. In Section V, we then develop an algorithm for recov-

ering dynamic stroke information of multi-stroke character

images, and some main theorems are summarized in Section

VI. Concluding remarks are given in Section VII.

II. GENERAL ASSUMPTIONS

Supposing that handwritten characters are scanned and

stored as binary image data, we here assume the structure

of character images as follows:

Assumption 1. (i) Characters consist of combinations of

single-strokes, i.e. multi-strokes.

(ii) Any single-stroke has start and end points of writing,

but the location of their points are nonidentical and

unknown.

(iii) A single-stroke may intersect with other single-strokes.

(iv) A single-stroke may intersect with itself.

By Assumption 1, we restrict ourselves to consider the

character with the following types of stroke structure. First,

in Assumption 1 (iii), it may be natural to consider two

types of intersection in Figure 1. S-crossing in Figure 1

(a) illustrates a case where a stroke intersects with another

stroke. T-crossing in Figure 1 (b) is a special case of S-

crossing, in which a terminal point, i.e. start or end point,

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.258

718

1
2

2

1

1 1

2

(a) S-crossing (b) T-crossing

Figure 1. Basic crossings.

1

2

3

(a) S-loop (b) T-loop

Figure 2. Loop structures.

is on another stroke. We then assume that two strokes

in T-crossing cross almost perpendicularly. We refer these

intersections as ‘basic crossings’.

On the other hand, Assumption 1 (iv) allows us that

a single-stroke generates the loop structures in Figure 2.

We then see that the loop structures are same as ones of

basic crossings, and the difference between them is that

intersection is constructed by a single-stroke self or two

single-strokes. As special cases of loop structure, we may

face the case where some part of a single-stroke may be

drawn twice. Such lines are called ‘double-traced lines’ [4].

We call the crossing structures derived from double-traced

lines ’double-traced structures’, and we here consider three

types in Figure 3. D-line in Figure 3 (a) is yielded by a

pen movement that is immediately followed by its reverse

movement. M-loop in Figure 3 (b) and L-loop in Figure

3 (c) are special cases of S-loop where the crossing angle

between two lines is very small. In addition, we consider

special types of S-loop and T-loop. That is, we allow S-

loops at which three or more lines intersect as shown in

Figure 4 (a). Also, a double-traced line of D-line can be a

part of a S-loop and T-loop as shown in Figure 4 (b) and

(c). As you can see from Figure 2 and Figure 3, there are

three-way branches in T-loop, D-line, M-loop and L-loop as

denoted by circle marks. These points are called ’odd point’

in the follows.

III. FORMAL DEFINITION

We next present formal definitions on single- and multi-

strokes considered in this paper. Such definitions may enable

us to recover the dynamic stroke information of multi-stroke

characters with complex patterns.

From Section 2, we see that each crossing structure is the

most fundamental single-stroke. Then, we may compose a

1

2

1

23

4

1

2

3

4

(a) D-line (b) M-loop (c) L-loop

Figure 3. Double-traced structures.

1

2

3

4
1

2

3

1

2

3

(a) S-loop (b) S-loop with D-line (c) T-loop with D-line

Figure 4. Special types of loop structures.

(a) S-composition (b) P-composition (c) U-composition

Figure 5. Compositions of crossing structures.

single-stroke with larger size by combining some crossing

structures. As types of such composition, we here consider

the following three types of composition: (a) series compo-

sition, (b) parallel composition and (c) unified composition,

as shown in Figure 5. First, (a) series composition, denoted

as S-composition, is to combines two crossing structures

by connecting their terminals. In Figure 5 (a), note that S-

composition consists of M-loop and D-line. Next, (b) par-

allel composition, denoted as P-composition, is to construct

parent-child relationship between two crossing structures.

That is, a crossing structure may exists in loop segment

of other crossing structure, but any loop and double-traced

structures except D-line could be a parent. Also, any loop

and double-traced structures except T-loop could be a child.

Figure 5 (b) is an example of a P-composition with two

M-loops. Finally, (c) unified composition, denoted as U-

composition, is composition such that a crossing structure

intersects with other crossing structures at some non-odd

points by S-crossing or T-crossing. Figure 5 (c) illustrates an

example of an U-composition of M-loop and D-line which

intersect by S-crossings and one T-crossing.

From the above results, we get the following formal

definition on single-stroke and multi-stroke.

Definition 1. Single-strokes are defined recursively as fol-

lows:

(i) Each loop structure in Figure 2 and Figure 4 and each

double-traced structure in Figure 3 is a single-stroke.

(ii) If I1 and I2 are two single-strokes, then S-, P-, and

U-composition of them is a single-stroke.

719

Definition 2. Multi-strokes are defined recursively as fol-

lows:

(i) Any single-stroke is a multi-stroke.

(ii) If I1 and I2 are two multi-strokes, then their combi-

nation is multi-stroke if I1 and I2 intersect arbitrary

times at some non-odd points with S-crossing.

(iii) If I1 and I2 are two multi-strokes, then their combina-

tion is multi-stroke if I1 and I2 intersect with T-crossing

such that a terminal of I1 is on a line segment (i.e.

non-odd point) of I2.

IV. CONSTRUCTING GRAPH

For recovering dynamic stroke information from a given

handwritten image I, we need to construct an undirected

graph G (see [5]). Such graph G is constructed as skele-

ton image Is by employing the thinning method of image

processing techniques. We here construct a graph G from

input I by employing the Zhang-Suen’s thinning algorithm

together with Stentiford preprocessing. A set of edges and

vertices of graph G is defined by E(G) = {ei, i = 1,2, · · · ,m}
and V (G) = {vi, i = 1,2, · · · ,n} respectively. Each edge

ei ∈ E(G) corresponds a line segment in the skeleton,

where the the sequence of coordinate points on the line

segment is labeled. Each vertex vi ∈ V (G) corresponds to

a geometrical feature point, i.e. terminal point and crossing

point. We here refer the sequence of coordinate points on

ek from vi to v j as c(vi,ek,v j). The concatenation of two

coordinate point data c(vi,e j,vk) and c(vs,et ,vu) is denoted

as c(vi,e j,vk)|c(vs,et ,vu).

Figures 6-8 show the graphs constructed from the crossing

structures in Figures 1-3 respectively. From Figure 6 (a) and

(b), we see that the graphs of S-crossing and T-crossing have

a vertex and edges that incident to the vertex. In Figure 7

(a) and (b), we observe that the graphs of S-loop and T-

loop have single vertex with a self-loop. In Figure 8 (a), the

graph of D-line may have two vertices and an edge, where

the edge is a double-traced line. Similarly, M-loop in Figure

3 (b) may yield the graph with two vertices and multiple-

edges connecting them as shown in Figure 8 (b), where one

of the edges is a double-traced line. L-loop in Figure 3 (c)

also yield the graph with two vertices as shown in Figure 8

(c) where the edge connecting them is a double-traced line

and one of the vertices has a self-loop.

Since there is no branch at vertex of degree two, without

loss of generality, we assume that there is no vertex with

degree two in the graph. The next lemma is useful to prove

the correctness of our algorithm which is developed in next

section.

Lemma 1. Let G be a graph obtained from a given

handwritten character image I. Then, the graph G is planar.

Furthermore, G has neither a vertex of odd degree greater

than three nor a vertex of degree two.

e0

e1

e2

e3

v0

v1

v2

v3

vi

vi

ep

eq er

vp

vq vr
θp

θqθr

(a) S-crossing (b) T-crossing

Figure 6. Graph representations corresponding to Figure 1.

vi

vi

(a) S-loop (b) T-loop

Figure 7. Graph representations corresponding to Figure 2.

θp

θqθq

vp

vq
vr

ep

eq er

vi vi vjep

eq

er esvr vs

θ1 θ2

vi vj

ep

er

es

eq
vr
vs

(a) D-line (b) M-loop (c) L-loop

Figure 8. Graph representations corresponding to Figure 3

Sketch of proof: The former assertion is obvious, i.e. G is

planar. That is, G can be drawn in a plane without any edge

intersections. The latter assertion can be proved by using

the mathematical induction on the number of composition

operations.

V. RECOVERY ALGORITHM OF DYNAMIC STROKE

INFORMATION

Based on the foregoing development, we here develop

an algorithm for recovering dynamic stroke information of

multi-stroke character image with complex patterns. The

algorithm consists of the following two steps: (S1) global

labeling and (S2) local labeling. Main objective of (S1)

is to detect each single-stroke and separate the graph G

into connected graphs Uk, k = 1,2, · · · , where each Uk

corresponds to a single-stroke. Then the recovering problem

reduces to the problems for single-strokes. We thus recover

drawing order of each single-stroke by (S2). Specifically,

by detecting all the types of graph structure in Uk – such

as D-line, M-loop and L-loop, we recover drawing order of

them by using the edge contraction operation which merges

two adjacent edges to an edge. As a result, all the Uk is

transformed into a graph that has exactly two vertices and

one edge connecting them such that the edge represents

whole of the single-stroke and the vertices correspond to

its start and end points.

720

We are now in the position to develop (S1) global labeling

and (S2) local labeling methods.

A. Global labeling

From Section III, we may see that any single-strokes

intersect with other strokes by only the basic crossings, i.e.

S-crossing and T-crossing in Figure 1. Then, in order to

decompose the graph G into some connected graphs Uk, k =
1,2, · · · corresponding to single-strokes, we have only to

detect S-crossing and T-crossing. Then, the connected graphs

Uk, k = 1,2, · · · are labeled.

First, we detect S-crossings from the graph G. Let vi ∈V

be a vertex with even degree, i.e. deg(vi) = 0(mod 2).
Moreover, letting v j, j = 0,1, . . . ,deg(vi)− 1 be a vertex

adjacent to vi, an edge e j between vi and v j is written as

e j = (vi,v j). Without loss of generality, we here assume that

(e0,e1, . . . ,edeg(vi)−1) is a sequence of incident edges to vi in

clockwise order around vi. Then, our task is to detect the pair

of ek1
and ek2

(k1 6= k2) for k1,k2 = 0,1, . . . ,deg(vi)−1such

that natural strokes is achieved. Such pairs of edges can be

readily detected by employing an idea of ”middle-edge” in

[4], and we have only to find a pair (ek,edeg(vi)/2+k), k =
0,1, · · · ,deg(vi)/2− 1. By directly connecting the edges

ek and edeg(vi)/2+k without vi, we consequently eliminate

any branch of stroke at vi. Hence, graph structure of S-

crossings is detected and the corresponding dynamic stroke

information is recovered. Note that, by this procedure, graph

structure of S-loops is also recovered at the same time since

it is quite same as one of S-crossing.

Next, we detect T-crossing in Figure 6 (b). By the above

procedure, any vertices with even degree are removed. Thus,

the degree of remaining vertices is one or three. From Sec-

tion IV, it is clear that such a vertex is one of the five types

of crossing structure, i.e. T-crossing, T-loop, D-line, M-loop

and L-loop. However, we notice that T-crossing satisfies the

condition so that three angles θp, θq, and θr constituted

by the three edges ep, eq and er are approximately equal

to π , π

2
and π

2
respectively (see Figure 6 (b)). Thus, by

employing the condition, the graph structure of T-crossings

can be detected and the corresponding stroke information

is recovered. Moreover, the graph structure of T-loop is

simultaneously detected and recovered by this procedure.

B. Local labeling

By the global labeling, the graph G is decomposed into

connected graphs Uk, k = 1,2, · · · corresponding to single-

strokes of a given character image. Therefore, our problem is

reduced to one for each single-stroke Uk, k = 1,2, · · · . Now,

note that the graph structures corresponding to S-loop and T-

loop on Uk have already been recovered by global labeling.

Thus, the remaining types of graph structure on the graph

Uk may be ones of D-line, M-loop and L-loop. But, when

the handwritten characters have complex patterns, M-loop

and L-loop may be contained as a part of P-composition in

Algorithm 1 Stroke order of D-line

Require: connected graphs Uk,k = 1,2,
Ensure: recover stroke order of D-lines.

for all Uk in arbitrary order do

Compute the vertex set V3 ⊆V (Uk) of degree three that

has at least one neighbor of degree one.

for all vertex vi ∈V3 in arbitrary order do

Let ep,eq,er,θp,θq and θr be as shown in Figure 8

(a). Let θp be the smallest among them.

if deg(vp) = 1 then

Add new edge e′ that connects vq and vr.

Set c(vq,e
′,vr) = c(vq,eq,vi)|c(vi,ep,vp)

|c(vp,ep,vi)|c(vi,er,vr).
Remove ep,eq,er,vp, and vi.

end if

end for

end for

Figure 5. We here propose the algorithms for detecting and

recovering D-line, M-loop and L-loop structures including

even the cases where P-composition exists. Then, the whole

dynamic stroke information of Uk, k = 1,2, · · · , i.e. a given

character I, can be recovered.

1) Detecting and Recovering D-line: Let vi be a vertex

with deg(vi) = 3 and let vp,vq, and vr be vertices adjacent

to vi respectively as shown in Figure 8 (a). Also, let ep =
(vi,vp),eq = (vi,vq), and er = (vi,vr) be incident edges to

vi. Then, it is obvious that the vertex vi is an odd point on

a graph structure of D-line, M-loop or L-loop. However, as

shown in Figure 4, such an odd point in D-line does not

have self-loop by itself or multiple-edge between itself and

another vertex. Moreover, noting that at least one of vp,vq,
and vr is a vertex with degree one, we see that the connecting

edge between such a vertex and vi is double-traced line.

Utilizing this feature, the graph structure of D-line is readily

detected and recovered as follows: Let us consider the case

where a vertex vi has deg(vi) = 3 and at least one of adjacent

vertices vp,vq, and vr is with degree one. If only one of

vp,vq, and vr is of degree one, the connecting edge between

such a vertex and vi may be double-traced line. Otherwise,

their vertices may include terminal point (i.e. start or end

points) of a single stroke. In order to determine the edge-

double traced line, we then evaluate the three angles θp,

θq and θr constituted by the three edges ep, eq and er. For

example, if θp � θq,θr and deg(vp) = 1, then ep is double-

traced line. We thus get the algorithm in Algorithm 1 for

detecting and recovering the graph structure of D-line from

the connected graphs Uk, k = 1,2, · · · .
2) Detecting and Recovering M-loop and L-loop: By the

procedure in Section V-B1, the remaining types of graph

structure in Uk, k = 1,2, · · · may be those of M-loops and

L-loops. Thus, when the vertex vi with deg(vi) = 3 exists on

721

Uk, it may indicate that the graph structures of M-loop or

L-loop is contained.

It is clear that a vertex vi is one in M-loop if and only if vi

is the vertex with deg(vi) = 3 and there exists a vertex v j(j 6=
i) with deg(v j) = 3, where v j is adjacent to vi with multiple-

edges. Let ep and eq be the multiple-edges connecting with

vi and v j, where |c(vi,ep,v j)| < |c(vi,eq,v j)|. Then, letting

θ1 and θ2 be two angles between ep and eq, we note that

both θ1 and θ2 are not small. On the other hand, if vi does

not only have just an adjacent vertex, i.e. v j with deg(v j) = 3

but also self-loop, it is clear that vi is of L-loop. Thus, for

detecting the graph structures of M-loop and L-loop from

Uk, we have only to detect vi with multiple edge and self-

loop, respectively.

However, when the character images I are given as ones

with complex patterns, M-loop and L-loop may contain

other smaller ones. That is, the graph structure of P-

composition is contained in Uk, and then the so-called

parent-child relationship is constructed by the combinations

of {M− loop,L− loop}. One of way for solving such a

case may be to detect and recover the graph structure

corresponding to the children, i.e. smaller M-loop or L-loop,

in first step. We then detect and recover the graph structure

corresponding to the parent, i.e. larger M-loop or L-loop.

Figure 9 illustrates an example of the above procedures,

where both parent and children are M-loop. In this example,

we here notice that the parent M-loop on vi and v j has no

multiple-edges as in shown Figure 9 (a). Thus, we firstly

need to detect child crossing structures and remove their

vertices by merging edges e1,e2,e3 and e4 to an edge e′ as

shown in Figure 9 (b). Hence, the stroke information of child

M-loop is recovered. By the same procedure, the parent M-

loop is also recovered. The case of other combinations of

{M− loop,L− loop} can be similarly detected and recov-

ered.

In general, the parent-child relations may form rooted tree,

where each node of the tree is either M-loop or L-loop.

We then need to detect and recover M-loop and L-loop by

a bottom-up approach. Thus, we can get Algorithm 2, in

which M-loop and L-loop can be detected and recovered

iteratively. In the algorithm, queues Queue-M and Queue-L

are used to store M-loops and L-loops respectively, Here,

’Enqueue’ is an operation to insert M-loop or L-loop at

the end of Queue-M or Queue-L, respectively. ’Dequeue’

is an operation to remove and return the element (vi,v j) at

the top of Queue-M or Queue-L. Moreover, in Algorithm

2, ‘RecLoop(α)’ for α ∈ {M− loop,L− loop} denotes an

algorithm for recovering the dynamic stroke information

corresponding to an M-loop or an L-loop, and it is given

as Algorithm 3 .

Figure 10 shows two recovery examples by the proposed

algorithm. In order to examine the effectiveness of proposed

algorithm, we here used characters which is hardly appeared

in the normal handwritings. Here, the original character

vi vj

vp vq

e3

e2

e4 e1

(a) P-composition of M-loops

vi vj

e’

(b) e1 ∼ e4 are merged to e′

Figure 9. Detection of P-composition.

Algorithm 2 Stroke order of P-compositions

Require: connected graphs Uk,k = 1,2,
Ensure: recover stroke order of M-loops and L-loops.

for all Uk in arbitrary order do

Find all M-loops (vi,v j) in Uk and call Enqueue((vi,v j),
Queue-M).

Find all self-loops (vi,vi) in Uk and the neighbor v j of

vi, and call Enqueue((vi,v j), Queue-L).

while Queue-M 6= /0 or Queue-L 6= /0 do

if Queue-M 6= /0 then

Call Algorithm 3 with input Dequeue(Queue-M),

Queue-M and Queue-L.

end if

if Queue-L 6= /0 then

Call Algorithm 3 with input Dequeue(Queue-L),

Queue-M and Queue-L.

end if

end while

end for

images in black lines are stored by employing a pen-tablet

device. Also, green and magenta lines are paths on the

corresponding connected graphs U1 and U2 respectively.

Moreover, the arrow marks denote the drawing order, where

the arrow-head direction has been chosen by employing the

heuristic rule based on natural writing behavior of top-to-

bottom and left-to-right. From these results, we may observe

that our algorithm correctly recovers dynamic stroke infor-

mation even though the character images contain complex

patterns.

722

Algorithm 3 Stroke order of α-loop for α ∈
{M− loop,L− loop}

Require: α-loop (vi,v j), Queue-M and Queue-L.

Ensure: recover stroke order of the given α-loop, and

enqueue its parent loop structure, if any.

Add new edge e′ that connects vr and vs.

if α =M-loop then

Set c(vr,e
′,vs) = c(vr,er,vi)|c(vi,ep,v j) |c(v j,eq,vi)

|c(vi,ep,v j)|c(v j,es,vs).
else if α =L-loop then

Set c(vr,e
′,vs) = c(vr,er,vi)|c(vi,ep,v j) |c(v j,eq,v j)

|c(v j,ep,vi)|c(vi,es,vs).
end if

Remove ep,eq,er,es,vi and v j.

if (vr,vs) is a parent M-loop of (vi,v j) then

Enqueue((vr,vs),Queue-M).

end if

if vr = vs and (vr,vt) is a parent L-loop of (vi,v j) then

Enqueue((vr,vt),Queue-L).

end if

VI. MAIN THEOREMS

For the results in previous section, we get the following

two theorems.

Theorem 1. The algorithm correctly recovers dynamic

stroke information for any multi-stroke character images

defined by Definition2.

Sketch of proof: We readily see that the global labeling step

works correctly. We can prove that the local labeling step

works correctly by mathematical induction on tree structure

of parent-child relation of P-composition, from the leaves

upwards.

Theorem 2. The time complexity of the algorithm is O(n),
where n is the number of vertices of the graph G.

Sketch of proof: We can prove that the number m of edges

of a simple planar graph with n ≥ 3 vertices satisfies m ≤
3n−6 by using the Euler’s formula. From this fact, we can

show that the cost of processing each crossing structures is

O(n). Since the algorithm process each crossing structure at

once, we can prove that the time complexity of the algorithm

is O(n).

VII. CONCLUDING REMARKS

In this paper, we considered the problem of recovering

dynamic stroke information from multi-stroke handwritten

character images. In particular, we extended the Kato and

Yasuhara’s work in [4], so that a class of characters whose

strokes are recursively formulated can be recovered. Then we

presented a formulation on such single- and multi-characters.

Moreover, we developed a systematic algorithm which can

Figure 10. Recovery examples.

recover dynamic stroke information from character images

in the class of our interest. It was shown that the correctness

of our algorithm is not only guaranteed mathematically, but

the time complexity of our algorithm also becomes O(n).
We examined the performances of the developed recovery

method by some examples. To conclude, the developed

method is effective as well as powerful for the recovery

problems of character strokes.

REFERENCES

[1] R. Plamondon and S. N. Srihari, Online and off-line handwrit-
ing recognition: a comprehensive survey, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol.22, no.1, pp.63-84,
2000.

[2] S. Lee and J. C. Pan, Offline Tracing and Representation
of Signatures, IEEE Trans. Systems, Man, and Cybernetics,
vol.22, no.4, pp.755–771, 1992.

[3] S. Jäger, Recovering Writing Traces in Off-Line Handwriting
Recognition: Using a Global Optimization Technique, Proc.
of 13th Int. Conf. on Pattern Recognition, pp. 931-935,
Vienna, Aug.25–29, 1996.

[4] Y. Kato and M. Yasuhara, Recovery of drawing order from
single-stroke handwriting images, IEEE Trans. Pattern Analy-
sis and Machine Intelligence, vol.22, No.9, pp.938–949, 2000.

[5] H. Fujioka and T. Nagoya, Recovering Stroke Order from
Multi-Stroke Character Images, Proc. of the 2011 2nd Int.
Conf. on Innovative Computing and Communication, and
2011 2nd Asia-Pacific Conf. on Information Technology and
Ocean Engineering, pp.34-37, Macao, March 5-6, 2011.

[6] J. R. Parker, Algorithms for Image Processing and Computer
Vision, Second Edition, Wiley Publishing Inc., 2011.

723

