
A Structure for Adaptive Handwriting Recognition

Vadim Mazalov and Stephen M. Watt

Department of Computer Science

University of Western Ontario

London, Canada

{vmazalov, Stephen.Watt}@uwo.ca

Abstract

We present an adaptive approach to the recognition

of handwritten mathematical symbols, in which a recog-

nition weight is associated with each training sample.

The weight is computed from the distance to a test char-

acter in the space of coefficients of functional approxi-

mation of symbols. To determine the average size of the

training set to achieve certain classification accuracy,

we model the error drop as a function of the number

of training samples in a class and compute the average

parameters of the model with respect to all classes in

the collection. The size is maintained by removing a

training sample with the minimal average weight after

each addition of a recognized symbol to the repository.

Experiments show that the method allows rapid adap-

tation of a default training dataset to the handwriting of

an author with efficient use of the storage space.

1 Introduction

Hardware support for digital handwriting has

reached its maturity, while algorithms for handling and

recognizing 2D input are still evolving. Our objective is

to develop an online adaptive handwriting recognition

algorithm, efficient in terms of the storage space, and to

test the method on the dataset of handwritten mathemat-

ical characters. Mathematics is one of the most difficult

forms of handwriting to be recognized due to non-trivial

syntactic verification and the large set of classes (that in-

clude Latin and Greek alphabets, digits, operators and

special characters) with many similar-looking symbols

written in non-linear form. Nevertheless, some progress

has been made by representing x and y coordinates of

a sample as parameterized functions and approximat-

ing the functions with truncated series of orthogonal

polynomials. The samples are classified with the dis-

tance to the convex hull of k nearest neighbors in the

space of coefficients of approximation [2]. The method

yields high accuracy, but has a significant drawback –

it does not adapt to variations in writing style of trained

classes. This is not acceptable in a production environ-

ment, since out of the box recognition applications are

usually trained with a default dataset of samples. Such

dataset relieves the user from an exhaustive training of a

mathematical recognizer that may include several hun-

dred classes. However, default training of some classes

may differ from the writing style of the user. This con-

cern is aggravated for online algorithms that typically

depend on the direction and order of writing of strokes.

Therefore, instances that appear identical visually, but

written in different styles, will be represented by points,

positioned in absolutely different locations in the coef-

ficients space. Thus, some training samples may repre-

sent noise and have negative impact on efficiency and

accuracy.

The exemplar-based learning in higher dimensions

is challenging due to the increase of sparsity of samples

of a class. Therefore, selection of training exemplars

has been thoroughly studied in instance-based machine

learning and related applications [6]. Some methods

suggest to retain a subset of the original instances [3, 1],

while other techniques propose to compute prototypes

from the training data [4]. Due to the nature of our clas-

sification method, we investigate the former approach.

It can be divided in incremental (start from an empty

training set and add instances one by one), and decre-

mental (start from the training set with all samples and

remove instances that are redundant or decrease accu-

racy). A decremental procedure DROP1 [6] suggests to

remove a point if all of its neighbors can still be cor-

rectly classified without the point. This and many other

techniques [3, 1] study the local relationship between

samples without taking into account that the training

dataset may change over time, moving the underlying

points in various directions.

We develop an online algorithm for adaptive recog-

nition of handwritten characters that is based on rein-

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.169

688

forcement of samples that have positive impact on clas-

sification and removal of samples that cause error or are

neutral. The method is suitable in both settings: When

users train a recognizer from scratch or when they use

the default dataset as the starting point. In the latter set-

ting, to determine the average size of a training class,

we model the error drop as a function of the number

of samples and attempt to correlate parameters of the

model with some spatial measurements of the class.

The proposed adaptive algorithm computes the par-

ticipation weight of each of the k neighbors in a correct

(incorrect) recognition and adds (subtracts) the value to

(from) the total weight of the neighbor. In a sense, the

method is similar to the IB3 algorithm [1], in which re-

moval or retaining of instances is based on counters.

However, the IB3 method is offline, meaning that it is

run only once to select good classifiers out of the pool

of training samples, while our algorithm is online and

makes removal decisions with each new sample avail-

able from the input. The method presented has poten-

tial of asymptotic improvement in performance over the

course of its use and is suitable for a variety of instance-

based machine learning applications. Unlike some al-

gorithms, based on neural networks or hidden Markov

models, the proposed technique uses only gradual up-

dates, making it suitable for real-time applications.

The main results of this paper are

• an experimental analysis of how error rate drops as

a function of the class size;

• an empirical model for the error rate, fitting the

experimental data well, to determine the average

size of a class for desired accuracy;

• an adaptive algorithm for distance-based symbol

recognition, using the functional approximation

framework.

This paper is organized as follows. Section 2 de-

scribes some basic preliminaries. Section 3 explains our

approach to modelling the recognition error. The adap-

tive recognition algorithm is presented in Section 4.

Section 5 gives the experimental results that show good

approximation of the error function and rapid adapta-

tion of the recognition algorithm to the writing style of

a user. Finally, Section 6 concludes the paper.

2 Preliminaries

In online classification environment, a character is

given as a sequence of points available from the digital

pen. For a single-stroke sample, coordinates of points

are represented as parameterized functions X(λ) and

Y (λ), where parameter λ can be time, arclength, etc.

These functions are approximated with truncated or-

thogonal polynomial basis. The 0-order coefficients of

approximation regulate the initial position of the char-

acter and can be neglected to normalize location of the

symbol. Dividing the rest of the vector by Euclidean

norm can normalize the sample with respect to size. For

a multi-stroke character, all strokes are joined consecu-

tively and the resulting stroke is processed as it is de-

scribed for a single-stroke symbol. Normalized coeffi-

cients of characters can be regarded as features describ-

ing objects to be classified. The recognition algorithm

is based on the distance to convex hulls of k-nearest

neighbors in the space of coefficients [2].

3 Modelling the Recognition Error

In our classification paradigm, the concept of person-

alized recognition can be reformulated as continues for-

mation of the training set. A set of training characters of

a class forms a cluster in the space. A priori knowledge

of the average initial size of a training class to achieve a

desired classification accuracy is important for compact

storage. It has an additional usability-related benefit:

When a new class is introduced to the dataset, the user

can be informed about the expected error drop depend-

ing on the number of samples introduced to the class.

Here and below, we will use the following notation:

n is the number of training samples that the class con-

tains in a given moment and N is the maximal num-

ber of training samples available in the class. Based on

our observation, convergence of the recognition error of

samples of a class can be closely described by the mod-

els

ε(n) =
An+B

n+ C
(1)

where A,B and C are parameters, or

ε(n) = αe−βf(n) (2)

where α and β are parameters, and f(n) is a monotoni-

cally increasing function.

Our objective is to find values of the parameters for

each class. We expect the parameters to be dependent

on some inner properties of a class, as well as the posi-

tioning of the class relative to neighboring classes. Fur-

ther, the mean parameters can be used to describe the

average error drop.

4 Adaptive Recognition

Most commonly, misclassification of handwritten

characters occurs when different samples are written

689

similarly, since writing styles of users can vary signif-

icantly. On the other hand, classes of characters pro-

vided by one user can usually be discriminated well.

As discussed in Section 2, only k samples of a candi-

date class are used in classification of a test symbol.

Each of these k exemplars should be awarded a weight,

computed as a function of the distance to the test sam-

ple. If the training symbol is located relatively close to

the test character, the weight should have large abso-

lute value, otherwise the weight should be close to zero.

If the training sample is of the same class as the test

symbol, the weight should be positive and otherwise –

negative.

In general, distances between training samples

within a class do not follow any of the major univariate

distributions, since a class may contain several styles

that group the exemplars. Therefore, basing the weight

on statistical properties of a class can be quite challeng-

ing. Instead, we take the weight as follows: For a given

test sample ts and a training exemplar ti, the recogni-

tion weight has the form

wti =
1

d(ts, ti) + 1

where d(ts, ti) is the distance between the points. This

weight is added to the total weight of the sample ti, if

ts and ti belong to the same class, and subtracted other-

wise.

When a new sample is recognized, it is added to the

class, and simultaneously a sample with the minimal av-

erage weight is removed from the dataset to prevent its

growth. Nevertheless, at any given moment, the size of

a class should not be less than k (the number of nearest

neighbours that form convex hull during classification).

The outline of the method is presented in Algorithm 1.

5 Experimental Results

This section presents experimental results of mod-

elling the recognition error and the adaptive classifica-

tion method. The experimental dataset is identical to

the one described in [2].

5.1 Modelling the Recognition Error

We conducted a series of experiments to measure

how the recognition rate changed as points were added

to the classes. Each class was measured separately, in

the following manner: All symbols from the class to

be tested were removed from the training data set and

the symbols from other classes were retained. Further,

the samples from the test class were separated randomly

Algorithm 1 Adaptive recognition algorithm

Input: ts – a test sample to be recognized.

{Recognize the sample as explained in Section 2}
Cl← recognition class of ts
{Recompute weights}
for i = 1→ T do

{For each of the candidate classes}
if Ti = Cl then

for j = 1→ k do

{Increase the weight of each nearest neighbor

tij in the correct class}
wtij ← wtij +

1
d(ts,tij)+1

end for

else

for j = 1→ k do

{Decrease the weight of each nearest neigh-

bor tij in the incorrect class}
wtij ← wtij − 1

d(ts,tij)+1

end for

end if

{Increase the counter}
for j = 1→ k do

Ctij ← Ctij + 1
end for

end for

{Remove the exemplar with the minimal average

weight among the classes with the number of sam-

ples > k}
Remove exemplar t : wt = min

ij
{wtij

Ctij

, |Ti| > k}
Assign an initial weight to ts and add ts to the recog-

nized class.

into a test set Pi and a training set Pr. Then the symbols

from Pr were added, initially one at a time and then in

larger groups. After each addition of points, the recog-

nition rate of the ensemble was measured using the test

set. Thus, for each class, the recognition rate was tested

first with 0 training points, then with 1 training point,

then with 2, then after 3, 4, 5, 6, 7, 8, 10, 12, 14, 16,

20, 24, 28, 32, 40, 48, 56, 64, ... until all the training

points were used. The number of training points ranged

from 10 to 2048, depending on the class. This whole

process was repeated ten times, and the recognition rate

recorded for a class after a particular number of points

was reported as the average of these ten measurements.

The testing sets were selected randomly, but disjoint.

The set of classes is denoted as Ω. The outline of exper-

iments is given in Algorithm 2.

Some of the samples have several class labels.

Therefore, the recognition error can be less than 100%,

even if the class has zero training samples in it. Results

690

Algorithm 2 Outline of the experimental setting

for Each class ω in the set of classes Ω do

Split samples in the class for 10-fold cross-

validation.

for i = 1 to 10 do

Take the i-th part Pi for testing and the rest Pr

for training.

{Introduce integer variables used in splitting the

training set.}
s← 0, k ← 3
while s ≤ |Pr| do

Clear the training set for the class ω.

Conduct training with the first s samples from

Pr.

Conduct testing with samples from Pi.

if s = 2k then

k ← k + 1
end if

{Increase the amount of training samples}
s← s+ 2k−3

{where 2k−3 was selected heuristically, based

on the observation that adding samples to a

small training set has bigger impact than to a

larger set}
end while

end for

end for

of recognition for all classes, depending on n, are given

in Figure 1.

We make a few observations: First, we see that for all

classes the recognition rate improves dramatically with

each of the first few symbols added. Most of the func-

tions have shape that can be modelled with (1). For ap-

proximation, we used the Nonlinearfit Maple [5] com-

mand to evaluate A,B and C. In classes with more than

a few dozen samples, the error rate appeared to drop off

similarly to a negative exponential function (2). In (2),

f(n) =
√
n was found to perform well. By taking the

logarithm of both sides, the parameters can be evalu-

ated as a linear regression between log(ε(n)) and
√
n.

We used the LeastSquares Maple command to compute

the least squares approximation.

We tested both models (1) and (2) and computed the

average root mean square error (RMSE) among classes,

obtaining respectively 0.03 and 0.87. Model (1) per-

formed the better of the two, and so this is the one upon

which we have concentrated. Examples of approxima-

tion with (1) for different values of N and the average

model are given in Figure 2. We observed that classes

of smaller size, with N < 64, are approximated not as

good as larger classes, partially due to non-stable be-

Figure 1. Recognition error for all classes,

depending on n, the number of training

samples in a class

A B C
Mean -0.007 11.718 23.398

σ 0.054 9.805 9.805

Table 1. The mean and the standard devi-

ation of the parameters

haviour of the error function on the small testing set.

Therefore, the mean parameters A,B and C were com-

puted among classes with ≥ 64 training samples. The

mean and the standard deviation of the variables are

shown in Table 1. The small mean value of parame-

ter A can be considered as an argument that the error

model (1) can be simplified to ε(n) = B
n+C

. On the

other hand, such simplification will make the model less

robust and may have negative effect on the approxima-

tion accuracy. Therefore, we decided to keep the pa-

rameter.

The average RMSE between the modelled recogni-

tion rate and the actual recognition rate for classes of

certain size is presented in Figure 3(a). Figure 3(b)

shows the percentage of classes that are approximated

with RMSE less or equal a given value.

5.2 Correlation between class measurements
and A,B and C

We question whether parameters A,B and C are re-

lated to spatial characteristics of the class, such as posi-

tioning of points within the class and distance to neigh-

boring classes. For each class i, the following measure-

ments are considered (in Euclidean distance)

• Ri
1 - the maximal distance from the class center to

691

8 16 32 64 128 512 Average

Figure 2. Examples of approximation of error for classes of different size N

(a) (b)

Figure 3. RMSE results: (a) Average RMSE for classes of different N , (b) Percentage of classes

that are approximated with RMSE less or equal given RMSE

any point in the class.

• Ri
.75 - the minimum radius of a ball centered at

the class center that encloses 75% of points in the

class.

• Ri
a - the average of radii from all points in the class

to the class center.

• Ri
σ = Ri

a + σi, where σi is the standard deviation

of the radii from points in the class to the class

center.

• Di
F - the minimum distance between points of the

class to the closest neighboring class.

In addition, we study the measurements

Ďi
L = min

j 6=i
(dij −Ri

L −Rj
L),

D̄i
L = avg

j 6=i

(dij −Ri
L −Rj

L)

where L is any of the labels 1, .75, a, σ and dij is the

distance between centers of classes i and j.

Measurement Spearman Kendal tau-a

A Ď1 -0.29 -0.19

B Ďσ -0.55 -0.39

C Ďσ -0.59 -0.42

Table 2. The measurements with the

largest absolute values of the correlation

coefficients for each approximation vari-

able

Spearman and Kendall tau-a tests did not demon-

strate sufficient correlation of these measures with the

model parameters. The largest absolute values of sta-

tistically significant correlation coefficients for corre-

sponding class measurements are presented in Table 2.

5.3 Adaptive Recognition

For this experiment, each character in the collec-

tion is assigned to the author who provided the symbol.

692

(a) (b)

Figure 4. Adaptive recognition error of the (N +1)-th sample in a class: (a) For each author, (b)

Average among the authors

Then for each author, the dataset is split in two parts:

samples provided by the author (used in testing) and the

rest of the dataset. During the training phase, for each

class, we randomly select K samples and form the de-

fault training set. The value of K, the initial size of a

training class, can be determined from the error mod-

elling, and for this experiment we take K = 30. Dur-

ing the testing phase, a test sample is extracted from a

randomly chosen class among those written by the test

author and recognized. The recognition error of the N -

th sample by the author is computed as the ratio of the

number of misrecognitions of the N -th sample to the to-

tal number of N -th samples tested. This run is repeated

200 times and the average for each author is reported in

Figure 4(a). Figure 4(b) shows the average error among

all the writers. We observe that the adaptive algorithm

on average results in a rapid decrease of error and con-

verges to ≈ 99% accuracy.

6 Conclusion

We have shown how handwriting recognition tech-

niques based on functional approximation methods are

well suited to adaptive setting. Rather than organiz-

ing the workflow as a training phase followed by a use

phase, we see continuous improvement of recognition

results taking advantage of correction history. In our

setting, based on convex hulls of classes in the coeffi-

cient space, adaptation consists of weight-based evolve-

ment of the shape of the class envelopes. The exper-

iments have shown that the error rate drops approxi-

mately as (An+B)/(n+ C) as samples are seen, and

that A,B and C slightly vary by class and correlate with

class measurements to a minor degree. The average val-

ues of the parameters can be used to determine the size

of each class in a default training dataset. The initial

set assembled this way serves as an input to a weight-

based adaptive classifier. The weight of an exemplar is

computed from the distance to the test sample. With

each recognition, the symbol with the minimal average

weight gets deleted from the collection. Experiments

show that the model allows rapid adjustment to the style

of a particular writer and converges to approximately

99% accuracy.

References

[1] D. W. Aha, D. Kibler, and M. K. Albert. Instance-based

learning algorithms. In Machine Learning, pages 37–66,

1991.

[2] O. Golubitsky and S. M. Watt. Distance-based classifica-

tion of handwritten symbols. International J. Document

Analysis and Recognition, 13(2):113–146, 2010.

[3] P. Hart. The condensed nearest neighbor rule (corresp.).

Information Theory, IEEE Transactions on, 14(3):515 –

516, may 1968.

[4] T. Kohonen. Self-organization and associative memory.

Springer-Verlag New York, Inc. New York, NY, USA,

1989.

[5] Maplesoft. Maple 13 user manual, 2009.

[6] D. R. Wilson and T. R. Martinez. Reduction tech-

niques for instance-based learning algorithms. In Ma-

chine Learning, pages 257–286, 2000.

693

