
Building a Personal Handwriting Recognizer on an Android Device

 D. Dutta

Dept. of IT
 Heritage Institute of Technology

Kolkata, India

deepai.dutta@gmail.com

A. Roy Chowdhury

Dept. of IT
Heritage Institute of Technology

Kolkata, India

arunirc@gmail.com

U. Bhattacharya

CVPR Unit

Indian Statistical Institute

Kolkata, India

ujjwal@isical.ac.in

S. K. Parui

CVPR Unit

Indian Statistical Institute

Kolkata, India

swapan@isical.ac.in

Abstract — The wide usage of touch-screen based mobile

devices has led to a large volume of the users preferring

touch-based interaction with the machine, as opposed to

traditional input via keyboards/mice. To exploit this, we

focus on the Android platform to design a personalized

handwriting recognition system that is acceptably fast,

light-weight, possessing a user-friendly interface with

minimally-intrusive correction and auto-personalization

mechanisms. Since cursive writing on smaller screens is

not usual, here we study non-cursive handwriting only.

The recognition is done at character level using nearest-

neighbor matching to a small, automatically user-

adaptive and dynamically updating library of character-

class template gestures.

Keywords — Handwriting recognition; gesture

recognition; template matching; nearest neighbor; Android

handwriting recognition; adaptive handwriting recognition

I. INTRODUCTION

 Recently tabs have become popular and these are

now available with sufficient configurations suitable

for common computing jobs. An increasing number of

professionals now prefer to travel with the tablet

instead of their laptops. This is mainly because the

tabs are much more portable than the laptops or

notebooks and also such a handheld device has

superior battery life. These latest computers are

usually equipped with various software applications

that enable its user to work on documents, prepare

presentations, compile spreadsheets and so on. These

software applications are a way forward for

professionals who need to compute on the move.

 Among various tabs available in the market

Android-powered tabs are relatively more popular due

to its affordable price. Also, a large section of the

population finds Android tabs really impressive. It is

needless to say, although the Apple iPad are excellent

product, they are often not affordable to the

professionals of smaller organizations. On the other

hand, the Android operating system was put together

by Google and it has already established as a great

alternative to the Apple iOS. Also, there are hundreds

of applications (apps) for Android platform providing

stable and powerful performance with frequent regular

updates ensuring that it will survive for a long period.

 Since these devices with small form factor do not

have room for a physical keyboard, a virtual on-screen

keyboard is provided for input method. Although a

group of users have become accustomed in typing

using a virtual keyboard but a larger group does not

get comfort in typing using this on-screen keyboard

unlike the physical one. The situation is particularly

serious when it needs typing in one of the Indian

scripts containing a large number of characters where

pressing multiple keys for inputting a single character

is frequently required. An obvious solution to this

problem, particularly in the Indian scenario, is to

consider handwriting as the input method. A user

should find handwriting in an Indian script a more

natural way of interaction than using an onscreen

keyboard on the touchscreen device.

 In view of the above, we developed a light-weight

personalized handwriting recognition system suitable

for touch screen based Android devices. There has

been a lot of work on handwriting recognition in

various scripts. They often use machine learning

techniques such as Multilayer Perceptron (MLP) [1],

Support Vector Machine (SVM) [2], hidden Markov

model (HMM) [3,4] etc. along with a variant of

distinguishing features. Although such recognition

schemes provide acceptably high recognition

performance, usually they are not light-weight enough

to be suitable for hand-held devices. On the other

hand, template matching schemes [5] too have

application potential, especially as they can adapt

dynamically to user writing-style and they have

comparatively low computational complexity. Similar

strategy is suitable for most mobile platforms with

limited processing power.

 Android 1.6 and higher SDK platforms include a

new application pre-installed on the emulator, called

Gestures Builder. One can use this application to

create a set of pre-defined gestures for his/her own

application. Our present study is based on leveraging

the idea of this Gestures Builders.

 In the literature [6], the following desired aspects of

a “gesture shortcut system” with handwriting

recognition had been discussed:

1. It should be able to predict the target for an

input sample based on the targets of similar

samples from the same user.

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.189

682

2. It should be able to take advantage of samples

drawn by other users.

3. It should be able to recognize handwriting

even when there are no matching templates.

 The proposed personalized handwriting recognition

system is aimed at fulfilling the above criteria and it

has been simulated on Android-based touchscreen

platform for a set of 62 Bangla characters, consisting

of the basic characters and character modifiers. A

block diagram of the proposed system is shown in Fig.

1. Since here we do not consider any characteristics

specific to Bangla, the same scheme should work on

other scripts. Starting with a small pre-built library of

online handwritten character samples, gradually the

tool adapts to the handwriting style of the user and the

error rate drops significantly over subsequent uses.

 The remainder of our paper is organized as follows.

In Section II we give a brief survey of related works

available in the literature. We discussed a few

characteristics of Bangla script in Sec. III. In Sec. IV-

A, we describe the method of building the gesture

library. The recognition details on the touchscreen are

described in Sec. IV-B. Our approach for auto-

learning from corrections is described in Section IV-C.

The proposed application “remembers” from mistakes

by inserting the wrongly recognized handwritten

gesture (character) into its true class through user

selection. Experimental results are provided in Section

V and Section VI concludes the article.

II. RELATED WORK

 In the literature, there is extensive work on online

handwriting recognition as well as gesture recognition,

the latter being mostly done in the field of Human-

Computer Interactions. Li [6] used gestures on

Android platform to create a tool that allowed users to

rapidly access data by drawing gestures on the screen.

Further, Ouyang and Li [7] coupled handwriting

recognition and gestures on the Android platform to

better allow users to interact with their mobile phone

apps via shortcuts in the form of gestures. An SVM

was used to recognize the stroke classes after breaking

the input handwritten words into strokes, following

which character recognitions took place. Matching

input gestures against learned gestures was done by an

appearance-matching algorithm. Online recognition of

handwritten strokes of both characters and drawings

was investigated in [8, 9] for interactive table-top

surfaces, enabling them to have real-time recognition

of gestures and handwriting.

Benchmark recognition results of online handwritten

Indian script character recognition can be found in

[10]. In [11], Bhattacharya et al. studied a

segmentation based analytic scheme for recognition of

unconstrained online Bangla handwriting. An HMM

based on context dependent sub-word units was used

to recognize writer independent Bangla words in [12].

Limited lexicon unconstrained online handwritten

Bangla word recognition based on a hybrid

recognition technique using MLP and SVM was

studied in [13].

Figure 1. Block diagram of the proposed handwriting recognition

system.

III. SOME CHARACTERISTICS OF BANGLA SCRIPT

 Like most other Indian scripts, Bangla runs from left

to right in writing and it is a mixture of syllabic and

alphabetic scripts and possesses no equivalent to

capital letters as in Latin scripts. It has 50 basic

characters (shown in Fig. 2(a)) consisting of 11

vowels and 39 consonants. In addition to these basic

characters, often a modified character gets attached to

a basic character. Here, we include the case of 10

vowel modifiers and 2 consonant modifiers getting

attached to a basic character. Shapes of these character

modifiers are shown in Fig. 2(b).

Bangla script additionally consists of a large number

of compound characters formed by merging two or

more characters from the above lists. However, in the

present study, we did not consider such compound

characters.

 In the present study, we use handwritten samples of

Bangla basic characters from an existing publicly

available database [10]. This database consists of a

large number of samples. However, instead of adding

Sample input

via UI

• Load template library

• Check input sample

against library, assign
score to each

• Display top 10 matches
in UI list

• Unicode output in UI
TextArea

If corrected

Replace least used sample
in library class with user

input

Update UI
TextArea

Auto-learner

Module

Recognition

Module

683

such a large sample database in the template library,

only 15 representative samples from each class were

manually chosen to build the library. More samples

can be added latter to each class by a user, or as a

result of the auto-learning from corrections.

(a)

(b)

Figure 2. Ideal shapes of Bangla (a) basic characters, (b) character

modifiers.

IV. THE HANDWRITING RECOGNITION SYSTEM

 Our recognition system consists of the following

components:

1. A “Template Library” that stores handwriting

samples as Gesture objects.

2. A “Gesture Builder” that allows us to build a

library from manually input gestures, or use

an existing database of samples.

3. The “Recognition” module that takes in a

series of user-made gestures and outputs the

corresponding Unicode characters in a text

area.

4. An “Auto-learner” module (part of the

Recognizer) that learns from mistakes in

recognition corrected by user intervention.

A. Building the Template Library

 Though the system will adapt to the user’s style over

usage, initially a small library is provided so that the

user can immediately start using the device instead of

having to build a library from scratch using his/her

handwritten samples before being able to write

anything meaningful. A set of 15 representative

samples is considered for each character class to build

the library. A few samples used in the present study

are shown in Fig. 3. An interface for adding new

samples to the library is shown in Fig. 4.

Figure 3. A few samples of online handwritten Bangla characters.

 For easy and fast integration into the existing user

interface of Android, we use the platform’s framework

in some parts instead of defining our own data

structures.

 First we describe a “gesture”: a hand-drawn shape

on a touch screen, which is represented in the Android

library as a Gesture object. It can have one or multiple

strokes known as GestureStroke. GestureStroke in turn

consists of a sequence of timed points known as

GesturePoints. Multiple GesturePoints together form a

GestureStroke. These gestures can be stored in a

GestureLibrary. GestureStore is an interface, which

stores and maintains all the Gestures, which are

present in the GestureLibrary.

Figure 4. The interface for adding new UNIPEN samples to the

library.

 As the popular UNIPEN format is often used to store

online handwriting data samples, we describe below

how to initially populate the gesture library with

existing samples available in UNIPEN format. A valid

UNIPEN file essentially consists of all the coordinates

of the shape drawn in any device (Touch Screens,

Tablets). Sample points in a UNIPEN file begins with

a “.PEN_DOWN” tag and the last sample point is

followed by a “.PEN_UP” tag. There may be one or

more pairs of “.PEN_DOWN”, “.PEN_UP” tags

between the first and last sample points of a file.

 Before conversion of the UNIPEN file to a Gesture

object, all the UNIPEN Files are preprocessed with a

684

Smooth function where a 3-point moving average is

applied on all the strokes having at least three sample

points. Touch Screen devices come with different

screen sizes and hence there is a need to scale-down

those samples which are larger than the size of the

target display area and also scale-up those samples

which are very small compared to the display area.

 Initially, we read the coordinates of all sample points

of an input UNIPEN file and compute the bounding

box of the character shape. Following this, a scale

factor is calculated based on the dimensions of the

bounding box and the display area of the device. We

divide both x and y coordinates of each sample point

by this scale factor and the resulting coordinates are

translated so that the C.G. of the sample is shifted to

the center of the display area. Now, a GesturePoint

object (a standard object of JAVA used by the

Android OS) is constructed for each sample point

consisting of its x coordinate, y coordinate and a

timestamp t in milliseconds. The GesturePoint object

corresponding to the first point of a character sample

uses t = 0 and the timestamp values of successive

GesturePoints of the character are obtained by

incrementing the value of t of the previous object by

10. All such GesturePoint objects corresponding to a

stroke (i.e., sequence of points lying between two

successive “.PEN_DOWN” and “.PEN_UP”) is stored

into an array and it is passed as an input to a

GestureStroke class. Each such GestureStroke thus

formed corresponding to a character sample is added

to a Gesture object one by one. Thus, for each

character sample we obtain one Gesture object

consisting of one or multiple GestureStrokes. Each

Gesture object has a unique identifier string, part of

which identifies the particular Gesture with its true

character class. These Gestures are stored within a

Gesture Libraryfile, which is used during the

recognition phase. A few samples of 5 different

classes of our Gesture Library is shown in Fig. 5.

Figure 5. Five character classes and their samples from the gesture

library, reflecting the wide variation in writing styles among users.

B. The Recognition Module

 A brief description of the GUI front-end is required

for full understanding of the underlying processes. It

consists of the following:

1. A Gesture Overlay View where the gesture is

to be drawn.

2. A “Canvas” area below the transparent

overlay view

3. A Text Area

4. Prediction Scores and choices

 The gesture to be recognized is drawn in the Overlay

View as shown in Fig. 6 and is reflected persistently in

the Canvas area. This ensures that a word is visible in

its entirety instead of only the letter that is currently

being drawn onscreen.

Figure 6. A drawn gesture corresponding to the Bangla character

‘Chha’ being recognized correctly and its Unicode is placed in the

editable Text Area at the bottom of the Tab’s screen. The other
possible matches are shown in the right sidebar.

 For each gesture drawn, we pass it to the recognizer

module and the output corresponding to the top 10

nearest character classes (based on prediction scores).

What the Gesture Recognizer does is sampling N

temporally equidistant points from the strokes of a

Gesture object. We thus get vectors (x1, y1, x2, y2, …,

xN, yN) of equal length for each gesture. The squared

Euclidean distance between the input Gesture object

and the corresponding points of all the Gesture objects

in the library is pair-wise computed. They are assigned

scores based on the proximity to the input gesture for a

k-nearest neighbor search.

 Elastic matching using DTW (dynamic time warp)

technique was also studied. However, the flexibility in

such recognition was found to be an unwanted quality,

especially as there were many competing extra-class

samples in the library that were closely similar. A

point-to-point correspondence in similarity is preferred

in such cases. A similar observation and further details

were reported in [14].

685

 A look-up table using a hash map is present of all the

class IDs as keys and the Unicode values of the

corresponding Bangla character as the data in string

format. The top 10 score classes are matched with the

hash map to obtain their proper Unicode strings. These

are used to display labels of each class and the

recognition score in the Prediction Score area.

 The top score and its corresponding character class

ID are taken as the recognized class. This Unicode

string is written into the Text Area. This portion

supports the default onscreen keyboard for giving

spaces, line break etc.

C. Auto-learner Module

 A wrong prediction may occur initially, given the

wide variation in writing styles among different people

and also how these styles often result in close

similarity between inter-class characters. In most of

such cases, the correct recognition result is present in

the top 10 results displayed, differing by a small

percentage with the top (incorrect) recognition result.

The user can then select the correct one from among

the 10 top predictions. The gesture input by the user

(as a Gesture object) is then added to the Gesture

Library under the name/class ID corresponding to the

correct choice as specified by the user. Naturally this

new gesture would be a much closer match to any

future instances when the user will write this particular

character on the touchscreen. Thus after being

corrected the system adapts to its user’s individual

writing style, the accuracy increasing over use.

 The result of adding new gestures to the library for

each error case may end up in a bloated size. This is

avoided by deleting those character samples that are

predicted rarely in its class, making space for new

user-defined gestures to take its place.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

 The Auto-learner mechanism is effective, as is

shown by the increasing trend in percentage of correct

recognitions in the chart in Fig. 7. The initial

misclassifications are rectified as the system gradually

becomes more adapted to the user’s handwriting.

 For obtaining the experimental results of the

proposed system a group of 10 users were considered.

Each of them was asked to draw the present characters

whose templates are stored in the Gesture Library in

10 different “sessions”. In other words, samples from

each character class were drawn by each user 10 times.

By a “session” we mean the entire list of characters

being drawn on the touchscreen once by a user.

 The percentage of correct recognitions in the top

scored outputs for each session is plotted against each

session. A wrong recognition results in correction by

the user, in which case the sample gets added to its

correct character class. Subsequent sessions result in

higher accuracy, ending at the 10
th

 session at 87.8%.

Figure 7. Trends in accuracy of matching and no. of attempts in the

personal handwriting recognition system

VI. CONCLUSION AND FUTURE WORK

 Going back to the three desired features expected of

a personal handwriting recognition system, we now

compare how our system fares.

1. As the system subsequently stores inputs

made by the user, further use of those

samples by the user would result in better

accuracy as the recognition becomes more

customized to the user’s own unique writing

style.

2. The pre-built gesture library stores samples

gathered from a wide range of styles,

providing a broad base upon which coarse

recognition can initially take place, after

which finer tuning is done by incorporating

the user’s own gestures into that library.

3. Even if incorrect recognition takes place at

initial attempts due to lack of a matching

template within the concerned character class,

user feedback in the form of manual

correction over successive usage makes sure

that performance improves.

 Since we are getting the output of the recognized

character as Unicode values and as all Android phones

support Unicode character sets, “Intents” can be used

to call any desired app such as SMS, note etc. and pass

the data (in our case the recognized characters) as the

input for those apps. Intents are a feature of Android

that provide late runtime bindings amongst different

applications and are often used to invoke the services

of another Android application in order to perform

separate tasks. Thus, there can be easy and seamless

integration of this recognizer with other apps.

686

 Further work would be needed to extend this to

cursive Bangla handwriting recognition on Android

platform and also improve the initial accuracy. Instead

of recognizing a sample as a character straightaway, it

is possible to first classify each stroke sample into a

stroke class and then combining the all the stroke

classification results of a character sample, the

character classification may be done [15].

ACKNOWLEDGEMENT

 This work has been partially supported by the Dept.

of Information Technology, Govt. of India.

REFERENCES

[1] M. J. Castro-Bleda S. España J. Gorbe F. Zamora, D. Llorens
A. Marzal F. Prat J. M. Vilar, Improving a DTW-based
Recognition Engine for On-line Handwritten Characters by
Using MLPs, Proc. of 10th International Conference on
Document Analysis and Recognition, pp. 1260 - 1264, 2009.

[2] R. A. Abdul, M. Khalia, C. Viard-Gaudin, E. Poisson, Online
Handwriting Recognition Using Support Vector Machine,
Proc. IEEE Region 10 Conference TENCON 2004, Vol. 1, pp.
311 – 314, 2004.

[3] M. Nakai, N. Akira, H. Himodaira and S. Sagayama,
Substroke Approach to HMM-based On-line Kanji
Handwriting Recognition, Sixth Int. Conf. on Doc. Anal. and
Recog. (ICDAR 2001), pp. 491-495, 2001.

[4] W. Jiang, Z. Sun. HMM-based On-line Multi-stroke Sketch
Recognition. Proc. of the Fourth International Conference on
Machine Learning and Cybernetics, Guangzhou, 2005,
pp.4564-4570, 2005.

[5] J. Sternby, Structurally based template matching of online
handwritten characters, in W. Clocksin, A. Fitzgibbon, and P.
Torr, (editors), Proceedings of the 16th British Machine Vision
Conference (BMVC ’05), vol. 1, pp. 250–259, 2005.

[6] Y. Li. Gesture search: a tool for fast mobile data access. Proc.
of the 23nd annual ACM symposium on User interface
software and technology, pp. 87-96, 2010.

[7] T. Y. Ouyang, Y. Li. Bootstrapping Personal Gesture
Shortcuts with the Wisdom of the Crowd and Handwriting
Recognition. CHI 2012: ACM Conference on Human Factors
in Computing Systems, Austin, Texas, 2012, pp.2895-2904,
2012.

[8] M. Weber and M. Liwicki, Online Mode Detection:
Evaluation on Pen-Enabled Multi-touch Interfaces. Proc. of
International Conference on Document Analysis and
Recognition, pp. 957-961, 2011.

[9] M. Liwicki, O. Rostanin, S. M. El-Neklawy, A. Dengel. Touch
& Write: a Multi-Touch Table with Pen-Input. Proc. of the 9th
IAPR International Workshop on Document Analysis Systems,
pp. 479-484, 2010.

[10] T. Mondal, U. Bhattacharya, S. K. Parui, K. Das and D.
Mandalapu. On-line handwriting recognition of Indian scripts -
the first benchmark. Proc. of 12th Int. Conf. on Frontiers in
Handwriting Recognition, pp. 200-205, 2010.

[11] U. Bhattacharya, A. Nigam, Y. S. Rawat and S. K. Parui. An
analytic scheme for online handwritten Bangla cursive word
recognition. Proc. of the 11th Int. Conf. on Frontiers in
Handwriting Recog. (ICFHR 2008), pp. 320-325, 2008.

[12] G. A. Fink, S. Vajda, U. Bhattacharya, S.K. Parui and B. B.
Chaudhuri. Online Bangla Word Recognition Using Sub-
Stroke Level Features and Hidden Markov Models. Proc. of
12th Int. Conf. on Frontiers in Handwriting Recog. (ICFHR
2010), pp. 393-398, 2010.

[13] Sk. Mohiuddin, U. Bhattacharya and S. K. Parui.
Unconstrained Bangla online handwriting recognition based on
MLP and SVM. Proc. 2011 Joint Workshop on Multilingual
OCR and Analytics for Noisy Unstructured Text Data, ACM
Digital Library, Article No.16, 2011.

[14] P. Kristensson and S. Zhai. SHARK2: A large vocabulary
shorthand writing system for pen-based computers. Proc. UIST
'04. New York: ACM Press, pp. 43-52, 2004.

[15] S. K. Parui, K. Guin, U. Bhattacharya, and B. B. Chaudhuri,
Online handwritten Bangla character recognition using HMM,
Proc. of 19th Int. Conf. on Pattern Recognition, 2008, IEEE
Computer Society Press, 2008.

.

687

