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Abstract — The wide usage of touch-screen based mobile 

devices has led to a large volume of the users preferring 

touch-based interaction with the machine, as opposed to 

traditional input via keyboards/mice. To exploit this, we 

focus on the Android platform to design a personalized 

handwriting recognition system that is acceptably fast, 

light-weight, possessing a user-friendly interface with 

minimally-intrusive correction and auto-personalization 

mechanisms. Since cursive writing on smaller screens is 

not usual, here we study non-cursive handwriting only. 

The recognition is done at character level using nearest-

neighbor matching to a small, automatically user-

adaptive and dynamically updating library of character-

class template gestures.  

Keywords — Handwriting recognition; gesture 

recognition; template matching; nearest neighbor; Android 

handwriting recognition; adaptive handwriting recognition 

I.  INTRODUCTION  

   Recently tabs have become popular and these are 

now available with sufficient configurations suitable 

for common computing jobs. An increasing number of 

professionals now prefer to travel with the tablet 

instead of their laptops. This is mainly because the 

tabs are much more portable than the laptops or 

notebooks and also such a handheld device has 

superior battery life. These latest computers are 

usually equipped with various software applications 

that enable its user to work on documents, prepare 

presentations, compile spreadsheets and so on. These 

software applications are a way forward for 

professionals who need to compute on the move.  

   Among various tabs available in the market 

Android-powered tabs are relatively more popular due 

to its affordable price. Also, a large section of the 

population finds Android tabs really impressive. It is 

needless to say, although the Apple iPad are excellent 

product, they are often not affordable to the 

professionals of smaller organizations. On the other 

hand, the Android operating system was put together 

by Google and it has already established as a great 

alternative to the Apple iOS. Also, there are hundreds 

of applications (apps) for Android platform providing 

stable and powerful performance with frequent regular 

updates ensuring that it will survive for a long period. 

   Since these devices with small form factor do not 

have room for a physical keyboard, a virtual on-screen 

keyboard is provided for input method. Although a 

group of users have become accustomed in typing 

using a virtual keyboard but a larger group does not 

get comfort in typing using this on-screen keyboard 

unlike the physical one. The situation is particularly 

serious when it needs typing in one of the Indian 

scripts containing a large number of characters where 

pressing multiple keys for inputting a single character 

is frequently required. An obvious solution to this 

problem, particularly in the Indian scenario, is to 

consider handwriting as the input method. A user 

should find handwriting in an Indian script a more 

natural way of interaction than using an onscreen 

keyboard on the touchscreen device. 

   In view of the above, we developed a light-weight 

personalized handwriting recognition system suitable 

for touch screen based Android devices. There has 

been a lot of work on handwriting recognition in 

various scripts. They often use machine learning 

techniques such as Multilayer Perceptron (MLP) [1], 

Support Vector Machine (SVM) [2], hidden Markov 

model (HMM) [3,4] etc. along with a variant of 

distinguishing features. Although such recognition 

schemes provide acceptably high recognition 

performance, usually they are not light-weight enough 

to be suitable for hand-held devices. On the other 

hand, template matching schemes [5] too have 

application potential, especially as they can adapt 

dynamically to user writing-style and they have 

comparatively low computational complexity. Similar 

strategy is suitable for most mobile platforms with 

limited processing power. 

   Android 1.6 and higher SDK platforms include a 

new application pre-installed on the emulator, called 

Gestures Builder. One can use this application to 

create a set of pre-defined gestures for his/her own 

application. Our present study is based on leveraging 

the idea of this Gestures Builders.  

 

   In the literature [6], the following desired aspects of 

a “gesture shortcut system” with handwriting 

recognition had been discussed: 

1. It should be able to predict the target for an 

input sample based on the targets of similar 

samples from the same user. 

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.189

682



2. It should be able to take advantage of samples 

drawn by other users. 

3. It should be able to recognize handwriting 

even when there are no matching templates. 

 

   The proposed personalized handwriting recognition 

system is aimed at fulfilling the above criteria and it 

has been simulated on Android-based touchscreen 

platform for a set of 62 Bangla characters, consisting 

of the basic characters and character modifiers. A 

block diagram of the proposed system is shown in Fig. 

1. Since here we do not consider any characteristics 

specific to Bangla, the same scheme should work on 

other scripts.   Starting with a small pre-built library of 

online handwritten character samples, gradually the 

tool adapts to the handwriting style of the user and the 

error rate drops significantly over subsequent uses. 

   The remainder of our paper is organized as follows. 

In Section II we give a brief survey of related works 

available in the literature. We discussed a few 

characteristics of Bangla script in Sec. III. In Sec. IV-

A, we describe the method of building the gesture 

library. The recognition details on the touchscreen are 

described in Sec. IV-B. Our approach for auto-

learning from corrections is described in Section IV-C. 

The proposed application “remembers” from mistakes 

by inserting the wrongly recognized handwritten 

gesture (character) into its true class through user 

selection. Experimental results are provided in Section 

V and Section VI concludes the article. 

II. RELATED WORK 

   In the literature, there is extensive work on online 

handwriting recognition as well as gesture recognition, 

the latter being mostly done in the field of Human-

Computer Interactions. Li [6] used gestures on 

Android platform to create a tool that allowed users to 

rapidly access data by drawing gestures on the screen. 

Further, Ouyang and Li [7] coupled handwriting 

recognition and gestures on the Android platform to 

better allow users to interact with their mobile phone 

apps via shortcuts in the form of gestures. An SVM 

was used to recognize the stroke classes after breaking 

the input handwritten words into strokes, following 

which character recognitions took place. Matching 

input gestures against learned gestures was done by an 

appearance-matching algorithm. Online recognition of 

handwritten strokes of both characters and drawings 

was investigated in [8, 9] for interactive table-top 

surfaces, enabling them to have real-time recognition 

of gestures and handwriting. 

 

Benchmark recognition results of online handwritten 

Indian script character recognition can be found in 

[10]. In [11], Bhattacharya et al. studied a 

segmentation based analytic scheme for recognition of 

unconstrained online Bangla handwriting. An HMM 

based on context dependent sub-word units was used 

to recognize writer independent Bangla words in [12]. 

Limited lexicon unconstrained online handwritten 

Bangla word recognition based on a hybrid 

recognition technique using MLP and SVM was 

studied in [13].  

 

 
 

Figure 1.  Block diagram of the proposed handwriting recognition 

system. 

III. SOME  CHARACTERISTICS OF BANGLA SCRIPT  

   Like most other Indian scripts, Bangla runs from left 

to right in writing and it is a mixture of syllabic and 

alphabetic scripts and possesses no equivalent to 

capital letters as in Latin scripts. It has 50 basic 

characters (shown in Fig. 2(a)) consisting of 11 

vowels and 39 consonants. In addition to these basic 

characters, often a modified character gets attached to 

a basic character. Here, we include the case of 10 

vowel modifiers and 2 consonant modifiers getting 

attached to a basic character. Shapes of these character 

modifiers are shown in Fig. 2(b). 

 

Bangla script additionally consists of a large number 

of compound characters formed by merging two or 

more characters from the above lists. However, in the 

present study, we did not consider such compound 

characters. 

 

   In the present study, we use handwritten samples of 

Bangla basic characters from an existing publicly 

available database [10]. This database consists of a 

large number of samples. However, instead of adding 
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such a large sample database in the template library, 

only 15 representative samples from each class were 

manually chosen to build the library. More samples 

can be added latter to each class by a user, or as a 

result of the auto-learning from corrections.    

 

 
 

(a) 

 

 
 

(b) 
 

Figure 2.  Ideal shapes of Bangla (a) basic characters, (b) character 

modifiers.  

IV. THE HANDWRITING RECOGNITION SYSTEM  

   Our recognition system consists of the following 

components: 

 

1. A “Template Library” that stores handwriting 

samples as Gesture objects. 

2. A “Gesture Builder” that allows us to build a 

library from manually input gestures, or use 

an existing database of samples. 

3. The “Recognition” module that takes in a 

series of user-made gestures and outputs the 

corresponding Unicode characters in a text 

area. 

4. An “Auto-learner” module (part of the 

Recognizer) that learns from mistakes in 

recognition corrected by user intervention. 

 

A. Building the Template Library  

   Though the system will adapt to the user’s style over 

usage, initially a small library is provided so that the 

user can immediately start using the device instead of 

having to build a library from scratch using his/her 

handwritten samples before being able to write 

anything meaningful. A set of 15 representative 

samples is considered for each character class to build 

the library. A few samples used in the present study 

are shown in Fig. 3. An interface for adding new 

samples to the library is shown in Fig. 4.  

 

   
Figure 3.  A few samples of online handwritten Bangla characters. 

   For easy and fast integration into the existing user 

interface of Android, we use the platform’s framework 

in some parts instead of defining our own data 

structures. 

   First we describe a “gesture”: a hand-drawn shape 

on a touch screen, which is represented in the Android 

library as a Gesture object. It can have one or multiple 

strokes known as GestureStroke. GestureStroke in turn 

consists of a sequence of timed points known as 

GesturePoints. Multiple GesturePoints together form a 

GestureStroke. These gestures can be stored in a 

GestureLibrary. GestureStore is an interface, which 

stores and maintains all the Gestures, which are 

present in the GestureLibrary. 

 

 
Figure 4.  The interface for adding new UNIPEN samples to the 

library. 

   As the popular UNIPEN format is often used to store 

online handwriting data samples, we describe below 

how to initially populate the gesture library with 

existing samples available in UNIPEN format. A valid 

UNIPEN file essentially consists of all the coordinates 

of the shape drawn in any device (Touch Screens, 

Tablets). Sample points in a UNIPEN file begins with 

a “.PEN_DOWN” tag and the last sample point is 

followed by a “.PEN_UP” tag. There may be one or 

more pairs of “.PEN_DOWN”, “.PEN_UP” tags 

between the first and last sample points of a file. 

   Before conversion of the UNIPEN file to a Gesture 

object, all the UNIPEN Files are preprocessed with a 

684



Smooth function where a 3-point moving average is 

applied on all the strokes having at least three sample 

points. Touch Screen devices come with different 

screen sizes and hence there is a need to scale-down 

those samples which are larger than the size of the 

target display area and also scale-up those samples 

which are very small compared to the display area. 

   Initially, we read the coordinates of all sample points 

of an input UNIPEN file and compute the bounding 

box of the character shape. Following this, a scale 

factor is calculated based on the dimensions of the 

bounding box and the display area of the device. We 

divide both x and y coordinates of each sample point 

by this scale factor and the resulting coordinates are 

translated so that the C.G. of the sample is shifted to 

the center of the display area. Now, a GesturePoint 

object (a standard object of JAVA used by the 

Android OS) is constructed for each sample point 

consisting of its x coordinate, y coordinate and a 

timestamp t in milliseconds. The GesturePoint object 

corresponding to the first point of a character sample 

uses t = 0 and the timestamp values of successive 

GesturePoints of the character are obtained by 

incrementing the value of t of the previous object by 

10.   All such GesturePoint objects corresponding to a 

stroke (i.e., sequence of points lying between two 

successive “.PEN_DOWN” and “.PEN_UP”) is stored 

into an array and it is passed as an input to a 

GestureStroke class. Each such GestureStroke thus 

formed corresponding to a character sample is added 

to a Gesture object one by one. Thus, for each 

character sample we obtain one Gesture object 

consisting of one or multiple GestureStrokes. Each 

Gesture object has a unique identifier string, part of 

which identifies the particular Gesture with its true 

character class. These Gestures are stored within a 

Gesture Libraryfile, which is used during the 

recognition phase. A few samples of 5 different 

classes of our Gesture Library is shown in Fig. 5. 

 

     
Figure 5.  Five character classes and their samples from the gesture 

library, reflecting the wide variation in writing styles among users. 

B. The Recognition Module  

   A brief description of the GUI front-end is required 

for full understanding of the underlying processes. It 

consists of the following: 

1. A Gesture Overlay View where the gesture is 

to be drawn.  

2. A “Canvas” area below the transparent 

overlay view 

3. A Text Area  

4. Prediction Scores and choices 

   The gesture to be recognized is drawn in the Overlay 

View as shown in Fig. 6 and is reflected persistently in 

the Canvas area. This ensures that a word is visible in 

its entirety instead of only the letter that is currently 

being drawn onscreen. 

 

 
 

Figure 6.  A drawn gesture corresponding to the Bangla character 

‘Chha’ being recognized correctly and its Unicode is placed in the 

editable Text Area at the bottom of the Tab’s screen. The other 
possible matches are shown in the right sidebar. 

   For each gesture drawn, we pass it to the recognizer 

module and the output corresponding to the top 10 

nearest character classes (based on prediction scores). 

What the Gesture Recognizer does is sampling N 

temporally equidistant points from the strokes of a 

Gesture object. We thus get vectors ( x1, y1, x2, y2, …, 

xN, yN ) of equal length for each gesture. The squared 

Euclidean distance between the input Gesture object 

and the corresponding points of all the Gesture objects 

in the library is pair-wise computed. They are assigned 

scores based on the proximity to the input gesture for a 

k-nearest neighbor search. 

   Elastic matching using DTW (dynamic time warp) 

technique was also studied. However, the flexibility in 

such recognition was found to be an unwanted quality, 

especially as there were many competing extra-class 

samples in the library that were closely similar. A 

point-to-point correspondence in similarity is preferred 

in such cases. A similar observation and further details 

were reported in [14]. 
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   A look-up table using a hash map is present of all the 

class IDs as keys and the Unicode values of the 

corresponding Bangla character as the data in string 

format. The top 10 score classes are matched with the 

hash map to obtain their proper Unicode strings. These 

are used to display labels of each class and the 

recognition score in the Prediction Score area. 

   The top score and its corresponding character class 

ID are taken as the recognized class. This Unicode 

string is written into the Text Area. This portion 

supports the default onscreen keyboard for giving 

spaces, line break etc.  

C. Auto-learner Module  

   A wrong prediction may occur initially, given the 

wide variation in writing styles among different people 

and also how these styles often result in close 

similarity between inter-class characters. In most of 

such cases, the correct recognition result is present in 

the top 10 results displayed, differing by a small 

percentage with the top (incorrect) recognition result. 

The user can then select the correct one from among 

the 10 top predictions. The gesture input by the user 

(as a Gesture object) is then added to the Gesture 

Library under the name/class ID corresponding to the 

correct choice as specified by the user. Naturally this 

new gesture would be a much closer match to any 

future instances when the user will write this particular 

character on the touchscreen. Thus after being 

corrected the system adapts to its user’s individual 

writing style, the accuracy increasing over use.  

   The result of adding new gestures to the library for 

each error case may end up in a bloated size. This is 

avoided by deleting those character samples that are 

predicted rarely in its class, making space for new 

user-defined gestures to take its place. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

   The Auto-learner mechanism is effective, as is 

shown by the increasing trend in percentage of correct 

recognitions in the chart in Fig. 7. The initial 

misclassifications are rectified as the system gradually 

becomes more adapted to the user’s handwriting.  

    For obtaining the experimental results of the 

proposed system a group of 10 users were considered. 

Each of them was asked to draw the present characters 

whose templates are stored in the Gesture Library in 

10 different “sessions”. In other words, samples from 

each character class were drawn by each user 10 times. 

By a “session” we mean the entire list of characters 

being drawn on the touchscreen once by a user.  

   The percentage of correct recognitions in the top 

scored outputs for each session is plotted against each 

session. A wrong recognition results in correction by 

the user, in which case the sample gets added to its 

correct character class. Subsequent sessions result in 

higher accuracy, ending at the 10
th

 session at 87.8%. 

 

 
 

Figure 7.  Trends in accuracy of matching and no. of attempts in the 

personal handwriting recognition system 

VI. CONCLUSION AND FUTURE WORK 

   Going back to the three desired features expected of 

a personal handwriting recognition system, we now 

compare how our system fares.  

 

1. As the system subsequently stores inputs 

made by the user, further use of those 

samples by the user would result in better 

accuracy as the recognition becomes more 

customized to the user’s own unique writing 

style.  

2. The pre-built gesture library stores samples 

gathered from a wide range of styles, 

providing a broad base upon which coarse 

recognition can initially take place, after 

which finer tuning is done by incorporating 

the user’s own gestures into that library.  

3. Even if incorrect recognition takes place at 

initial attempts due to lack of a matching 

template within the concerned character class, 

user feedback in the form of manual 

correction over successive usage makes sure 

that performance improves.  

 

   Since we are getting the output of the recognized 

character as Unicode values and as all Android phones 

support Unicode character sets, “Intents” can be used 

to call any desired app such as SMS, note etc. and pass 

the data (in our case the recognized characters) as the 

input for those apps. Intents are a feature of Android 

that provide late runtime bindings amongst different 

applications and are often used to invoke the services 

of another Android application in order to perform 

separate tasks. Thus, there can be easy and seamless 

integration of this recognizer with other apps. 
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   Further work would be needed to extend this to 

cursive Bangla handwriting recognition on Android 

platform and also improve the initial accuracy. Instead 

of recognizing a sample as a character straightaway, it 

is possible to first classify each stroke sample into a 

stroke class and then combining the all the stroke 

classification results of a character sample, the 

character classification may be done [15].  
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