
Local Feature based Online Mode Detection with Recurrent Neural Networks

Sebastian Otte, Dirk Krechel

University of Applied Sciences Wiesbaden

Wiesbaden, Germany

Email: {otte,krechel}@ecmlab.de

Marcus Liwicki, Andreas Dengel

German Research Center for AI (DFKI)

Kaiserslautern, Germany

Email: firstname.lastname@dfki.de

Keywords-Neural Networks; RNN; Recurrent Neural Net-
works; LSTM; Long Short-Term Memory; Sequence Classifi-
cation; Sequence Learning; Mode Detection; Gesture Recogni-
tion; Local Features

Abstract—In this paper we propose a novel approach for
online mode detection, where the task is to classify ink traces
into several categories. In contrast to previous approaches
working on global features, we introduce a system completely
relying on local features. For classification, standard recurrent
neural networks (RNNs) and the recently introduced long
short-term memory (LSTM) networks are used. Experiments
are performed on the publicly available IAMonDo-database
which serves as a benchmark data set for several researches.
In the experiments we investigate several RNN structures
and classification sub-tasks of different complexities. The final
recognition rate on the complete test set is 98.47 % in average,
which is significantly higher than the 97 % achieved with an
MCS in previous work. Further interesting results on different
subsets are also reported in this paper.

I. INTRODUCTION

The task of drawing mode detection is to detect the

mode of online handwritten strokes. For example, a mode

detection system should be able to determine whether a user

is producing deictic gestures (e.g. to mark an object on a

map or to specify a route), handwritten text, or iconic object

drawings (people, cars, etc.) [1]. If a reliable mode detection

system is at hand the separation of text and non-text items

can be used as a preprocessing step before either handwriting

recognition or symbol recognition is applied.

With the growing amount of tablet devices available on the

market, there is an increasing need for real-time applications

where the user gets the recognition feedback immediately.

Using real-time mode detection improves the user experi-

ence on such devices, because instead of having the user

to switch manually between handwriting recognition, shape

detection, and gesture recognition, the mode-detection sys-

tem would be able to guess the user’s intention based on the

strokes themselves. The main motivation of this paper is pen-

enabled multi-touch interfaces [2], especially the Touch &

Write [3], which inherently distinguishes between touching

and pen and touch interaction.

Mode detection can be seen as a special case of

text/graphics segmentation for online documents [4], [5].

Instead of analyzing the online document as a whole, the

handwritten strokes are analyzed shortly after putting them

on the surface. This can be considered as a more difficult

task because of several reasons. First, there is no information

about the context of the other handwritten strokes, especially

those entered in the future. Second, drawing modes typically

increase the amount of classes to be distinguished from,

i.e., besides the classes of text and graphics also gestures

are possible. Finally, the result of drawing mode detection

should be available in real-time, i.e., the processing time

should be only a few milliseconds.

Recently [6], we introduced a multiple classifier system

(MCS) for mode detection which improved state-of-the-

art systems [1] by using better features, classifiers, and

combinations of all. While the system outperformed previous

work of [4] and [7], it has a critical drawback. Since a large

amount of more or less complicated features have to be

extracted and many classifiers are involved in the recognition

phase, the processing time becomes too long for practical

use.

In this paper we propose an orthogonal approach which

extracts local features for each point and finally applies

RNNs for recognition. This approach has several advantages

over the global feature extraction and classification. First,

quite simple features can be extracted which reduces the

processing time. Second, the system can be applied on

sequences with arbitrary length, i.e., no minimal or maximal

length is required. Finally, RNNs have been successfully

applied for several sequence learning tasks and therefore a

good performance can be expected.

II. METHOD

The first part of this section briefly discusses the local

features used in this paper and how they are extracted from

a stream of input vectors. The second part describes the two

recurrent network architectures proposed in this work to be

used for online mode detection.

A. Feature Acquisition

A sample is given as a sequence of n points pi ∈ R
2

which is further partitioned into subsequences (strokes). A

new stroke starts at each point where the pen-tip touches

the surface and ends at the last point before the pen-tip is

removed from the surface. Our approach is to acquire local

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.229

531

Table I
LOCAL ONLINE FEATURES

No. Description Note

1 sin(αi) Sinus of the angle between the cur-
rent and the last line segment

2 cos(αi) Cosinus of the angle between the
current and the last line segment

3 di Summed lengths of the current two
line segments |li|+|li+1|, normal-
ized with Eq. (1)

4 bi Pen-up/pen-down: 1.0 if one of the
current two line segments bridges
between two strokes, 0.0 otherwise

5 si Stroke index, normalized with Eq.
(1)

features only by streaming the points one by one in forward

direction without any complex or global preprocessing. This

makes the system applicable in real-time scenarios. Fig. 1

p1

p2

pi

pi+1

pi+2

pn−1

pn

αi

Figure 1. Local features of a point sequence

illustrates the acquisition of some features calculated in a

local vicinity. The complete set of features is given and

explained in Tab. I. In some cases, even if the range of

input values is not standardized, it makes sense to normalize

those inputs when dealing with neural networks. This paper

follows [8] for normalization issues, i.e., the mean mk and

the standard deviation σk are used to compute the net input

v̂k for a given feature value vk:

v̂k =
vk −mk

σk

. (1)

For our experiments we compute means and standard devi-

ations over all training samples. These values are stored and

used for normalizing both training and test samples.

Note that feature 1 and 2, in literature generally known

as curvature, give a relative and fully rotation invariant di-

rection deviation and feature 3 represents the writing speed.

In combination these features may provide the extraction of

frequency information, which we assume are mainly relevant

for the local features based sequence classification. Addi-

tionally feature 4 and 5 convey more structural information.

B. Recurrent Neural Networks

While feedforward neural networks can only map between

vectors in a static way, recurrent neural networks (RNNs) are

able to map between sequences through dynamic informa-

tion flow. They can generalize by observing data sequences

even if the data is partially inaccurate or noisy. Due to this

feature, RNNs seem to be a suitable choice for our task of

sequence classification.

Our standard architecture (Fig. 2) is a two-layered RNN

with a fully connected recurrent hidden layer as proposed

in [8]. The input layer size depends on the specific number of

...
...

hidden outputinput

Figure 2. Recurrent architecture

used features. The hidden layer consists of k units using the

hyperbolic tangent (tanh) for activation. The output layer

consists of two tanh-units. In the remainder of this paper,

we refer such a network as RNN(k).

Training RNNs is done by backpropagation through time

(BPTT) [9] with momentum term. Thereby, the gradients are

computed over the complete input sequences. A frame-wise

computation could be applicable as well but this is left for

future work.

The second architecture used in this paper are long short-

term memory networks (LSTMs) [10]. LSTMs overcome the

main problem of traditional RNNs where the error vanishes

dramatically over time while training. By simulating kind

of differentiable memory cells, LSTMs are able to “trap”

the error inside and allow to learn long time-lag problems

with gradient descent [11]. We use LSTMs in their extended

version with forget gates [12] and peephole connections [13].

The gates are activated with the standard sigmoid function

(1+ e−x)−1 and cell inputs and outputs are squashed using

tanh.

The LSTM architecture is the same as for simple RNNs,

however, the k hidden units are replaced by k LSTM

blocks (see [8] for details). Analogously we denote the used

architecture as LSTM(k). Similarly to RNNs, our LSTMs are

also trained with BPTT using the gradients specified in [14].

The classification works as follows: First, a sequence is

presented to the network. Second, the output y ∈ R
m of the

network after sequence processing is computed. Note that

m is also the number of classes. Finally, we select the class

using the function c : Rm → {1, . . . ,m}:

c(y) = min

(

arg max
1≤i≤m

(yi)

)

. (2)

532

III. EXPERIMENTS AND RESULTS

All experiments in this section are performed on the

IAMonDo database [7] containing 1, 000 online handwritten

documents acquired from about 200 persons. Typical con-

tents are text, drawings, diagrams, formulas, tables, lists, and

markings. The traces contained by this database are widely

unconstrained, which provides us to verify the robustness

and performance of our approach in a real-world scenario.

In [7] a benchmark experiment for the task of distinguish-

ing text and graphics has been performed. There the method

of [4] achieved a performance of 91.3 % and the offline

method proposed by [7] achieved 94.4 %.1 A previously

introduced MCS performed with 97 % accuracy [6].

For training we used online BPTT with at most 200

epochs. However, mostly only 20-50 epochs were needed

on average through early stopping. The learning rate ranges

from 10−5 to 10−3 and the momentum rate is 0.9. All results

are achieved using an own Java implementation of RNNs

and LSTMs.2

The aim of our experiments is to investigate the behavior

of the different RNN structures on sub-tasks with different

complexity. Therefore, we preform experiments on the fol-

lowing three setups:

1) We trained and evaluated on selected subsets (Exp. 1-

6) of the database, which are tables, rest and diagrams.

Note that tables usually just contain straight lines

as drawings and are therefore easy-to-learn, while

diagrams have much more variations making them

hard-to-learn (see the examples in Fig. 5).

2) We trained on particular datasets and evaluated on the

complete database (Exp. 7-8).

3) We trained and evaluated on the entire database

(Exp. 9-10).

Note that the third setup is the setup which was used in all

reference experiments in the previous work.

Each experiment has been repeated 10 times to ensure

stable results independent from beneficial random-weight-

initialization. The results for each architecture with optimal

k are listed in Tab. II.

Let us consider Exp. 1-4. The subsets tables and rest can

be learned optimal with RNNs as well with LSTMs. Thus,

only a short-term context is necessary to distinguish words

and simple shapes as contained by these sets. The impact

of increasing the network complexity is only marginal but

verifiable existent as can be seen in Fig. 3, which depicts the

results for different networks particular for the subset tables.

An interesting result is that already a very simple RNN(2)

performs quite well here.

1Note, however, that the offline results are not directly comparable to the
online results, because another evaluation method is applied. [7]

2The toolkit (JANNLAB, see http://www.ecmlab.de/jannlab) has been
verified on standard sequence labeling tasks proposed in the literature.

 99.4

 99.5

 99.6

 99.7

 99.8

 99.9

 100

2 4 8 16

T
e

s
ts

e
t

a
c
c
.

[%
]

Hidden units/blocks

RNN (mean)
RNN (max)

LSTM (mean)
LSTM (max)

Figure 3. Tables experiments

 82

 84

 86

 88

 90

 92

 94

2 4 8 16

T
e

s
ts

e
t

a
c
c
.

[%
]

Hidden units/blocks

RNN (mean)
RNN (max)

LSTM (mean)
LSTM (max)

Figure 4. Diagrams experiments

The strength of LSTMs becomes important when the

problem becomes harder. This follows from the results of

Exp. 5-6. While the best RNN achieves a mean accuracy

of 87.23% the best LSTM achieves 93.65%. On comparing

only the shapes-accuracy this issue appears still more clearly.

Another interesting observation was that for the hard

diagrams set, the hidden layer size plays a decisive role for

LSTMs but not for RNNs (see Fig. 4). Both architectures

become more stable with a larger hidden layer. However,

the maximum-performance of RNNs, which can only learn

short-term dependencies, do not benefit from increasing the

number of hidden units, whereas LSTMs perform dramat-

ically better with more hidden blocks. It seems possible

that the results can further be improved with k > 8 hidden

blocks.3

Noteworthy are also Exp. 7-8: Only trained with the

easy subset tables, both architectures yield good results on

the entire database, especially the LSTM(4) with 97.13%
(mean) and 97.99% (max.).

3This has not been tested yet, because of the exploding training time.

533

Table II
EXPERIMENTAL RESULTS

Exp. Network
Sample set Acc. [%] Acc. [%] (test set)
(train/test) (train set) All Words Shapes

1 RNN(8) tables/tables 99.50 99.71± 0.27 (99.94) 99.91 (100.00) 98.71 (99.67)
2 LSTM(8) tables/tables 99.94 99.95± 0.05 (100.00) 99.98 (100.00) 99.83 (100.00)
3 RNN(16) rest/rest 99.24 98.90± 0.38 (99.20) 99.73 (100.00) 90.76 (95.65)
4 LSTM(8) rest/rest 99.24 99.06± 0.40 (99.50) 99.84 (100.00) 91.41 (94.57)
5 RNN(16) dia./dia. 87.93 87.23± 1.62 (88.74) 97.01 (100.00) 61.88 (74.61)
6 LSTM(8)ii dia./dia. 96.01 93.65± 0.73 (94.62) 97.28 (98.72) 84.24 (88.28)
7 RNN(8) tables/all 99.50 95.83± 0.64 (96.68) 98.96 (99.64) 53.18 (59.28)
8 LSTM(4) tables/all 99.90 97.13± 0.46 (97.99) 99.63 (99.77) 63.02 (73.76)
9 RNN(16) all/all 96.49 96.87± 0.55 (97.64) 98.76 (99.41) 71.11 (78.04)
10 LSTM(8)i all/all 98.44 98.47± 0.25 (98.77) 99.70 (99.84) 81.67 (86.20)

ilearning rate 10
−4, iilearning rate 10

−3

Table III
TRAINING TIME

Training set Network Mean time [s]

tables RNN(16) 159
tables LSTM(8) 2412

rest RNN(16) 319
rest LSTM(8) 2329

diagrams RNN(16) 558
diagrams LSTM(8) 3760

all RNN(16) 6208
all LSTM(8) 24851

Finally, the results of Exp. 9-10 demonstrate the over-

all performance of our approach. Trained with the entire

database an LSTM(8) achieves 98.47% accuracy (mean)

and even 98.77% (max.). This is significantly better than

the results of the MCS mentioned above.

Through all experiments LSTMs behave more stable than

RNNs. This can be realized on comparing the standard

deviations in Tab. II.

To comprehend the classification results, let us look at

Fig. 5, which shows different classification examples (correct

and wrong classified by an LSTM(8)) of the easy table

subset and the hard diagram subset as well. Simple shapes

(a) and typical words (c) and also more complex shapes

mostly consisting of fast draw lines (b) are classified correct,

while single fast drawn letters/digits and shapes with a lot

of writing-like local variantions are classified wrong.

An RNN(16) with 368 weights processes4 an input vector

in only 0.05 ms. Respecting a mean of 63 vectors per sample

results in on average 2.8 ms per sample. An LSTM(8) with

456 weights needs on average 16.8 ms per sample. This

obviously fulfills any kind of realtime requirements.

Anyhow, during training the constant overhead from

RNNs to LSTMs is clearly appreciable (see Tab. III). On

training the tables set a RNN(16) is about 15 times faster

than a LSTM(8). But we can observe, that this factor

decreases on increasing the problem-complexity. On training

4Java HotSpot(TM) 64-Bit Server VM (build 11.3-b02, mixed mode) on
an Intel Core2Duo E6850 @ 3.0 GHz.

the entire database this factor is only about 4.

IV. CONCLUSION AND FUTURE WORK

We have presented a local feature based approach for

online mode detection using RNNs and LSTMs. It was

shown that on this problem the simple RNNs and the more

complex LSTMs outperform other state-of-the-art classifiers

including SVMs and MCS.

More specifically, on the IAMonDo-database RNNs out-

perform all previously reported single classifier systems and

even achieve a slightly better performance than an MCS.

The final maximal accuracy is about 97.6 %. Furthermore,

LSTMs achieve an accuracy of close to 99 %. On particular

subsets some LSTMs could even perform a perfect recog-

nition. However, difficult subsets of the database still leave

room for improvements.

One future task is to evaluate the behavior of bidirectional

RNNs [15] or bidirectional LSTMs [14] for the presented

problem. It seems possible that providing both past and

future context can enhance the accuracy of mode detection.

Similar investigations in handwriting recognition [16] are a

promising support for this hypothesis.

A further improvement could be the combination of a

possibly bidirectional RNN (or LSTM) and a multilayer

perceptron (MLP) where the RNN still performs on local

feature sequences (maybe using more features) and the MLP

uses global features. This can be extended to MCS as

done in [6]. However, this would also result in longer time

needed for classification. Thus, for real-time applications,

an incremental recognition approach can be used, i.e., first

the RNN outputs an initial guess and second, if more

time is available, a better estimation can be made using a

combination of several classifiers.

Nonetheless, extending the system also increases its com-

plexity, which becomes apparent when comparing LSTMs

and RNNs training time. In our framework an RNN can be

trained 4-15 times faster then a comparably LSTM.

Another promising aspect of simple online computing

RNNs, as we used here, is that they consume only minimal

hardware resources, which allows a very efficient high

534

(a) Table (shapes) - (correct classified) (b) Diagram (shapes) - (correct classified)

(c) Diagram (words) - (correct classified) (d) Diagram (words) - (wrong classified) (e) Diagram (shapes) - (wrong classified)

Figure 5. Different classification examples of the subsets table and diagram.

performance mode detection system directly implemented

onchip in mobile devices.

Among other things, our results lead us to assume that

RNNs and especially LSTMs work great also for general

online gesture classification which we will evaluate in future

work.

REFERENCES

[1] D. Willems and L. Vuurpijl, “A bayesian network approach to
mode detection for interactive maps,” in Proceedings of the
Ninth International Conference on Document Analysis and
Recognition - Volume 02. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 869–873.

[2] NUI Group Authors, Multi-Touch Technologies. NUI Group,
2009. [Online]. Available: http://nuicode.com/attachments/
download/115/Multi-Touch Technologies v1.01.pdf

[3] M. Liwicki, O. Rostanin, S. M. El-Neklawy, and A. Dengel,
“Touch & write: a multi-touch table with pen-input,” in 9th
Int. Workshop on Document Analysis Systems, 2010, pp. 479–
484.

[4] A. Jain, A. Namboodiri, and J. Subrahmonia, “Structure in
on-line documents,” in Proceedings of the Sixth International
Conference on Document Analysis and Recognition. Wash-
ington, DC, USA: IEEE Computer Society, 2001, pp. 844–
848.

[5] C. M. Bishop, M. Svensen, and G. E. Hinton, “Distinguishing
text from graphics in on-line handwritten ink,” in Proceedings
of the Ninth International Workshop on Frontiers in Hand-
writing Recognition, ser. IWFHR ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 142–147.

[6] M. Weber, M. Liwicki, Y. T. Schelske, C. Schoelzel, F. Strauß,
and A. Dengel, “MCS for online mode detection: Evaluation
on Pen-Enabled multi-touch interfaces,” in 2011 International
Conference on Document Analysis and Recognition (ICDAR).
IEEE, Sep. 2011, pp. 957–961.

[7] E. Indermühle, M. Liwicki, and H. Bunke, “IAMonDo-
database: an online handwritten document database with
non-uniform contents,” in 9th Int. Workshop on Document
Analysis Systems, 2010, pp. 97–104.

[8] A. Graves, B. Bruegge, J. Schmidhuber, and S. Kramer, “Su-
pervised sequence labelling with recurrent neural networks,”
Ph.D. dissertation, Technische Universität München, 2008.

[9] R. J. Williams and D. Zipser, “Gradient-Based learning
algorithms for recurrent networks and their computational
complexity,” 1995.

[10] S. Hochreiter and J. Schmidhuber, “Long Short-Term mem-
ory,” Neural Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997.

[11] ——, “LSTM can solve hard long time lag problems,”
Advances in Neural Information Processing Systems 9, pp.
473—479, 1997.

[12] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to
forget: Continual prediction with LSTM,” NEURAL COM-
PUTATION, vol. 12, pp. 2451—2471, 1999.

[13] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, “Learning
precise timing with LSTM recurrent networks,” Journal of
Machine Learning Research, vol. 3, pp. 115—143, 2002.

[14] A. Graves and J. Schmidhuber, “Framewise phoneme classi-
fication with bidirectional LSTM and other neural network
architectures,” Neural Networks: The Official Journal of the
International Neural Network Society, vol. 18, no. 5-6, pp.
602–610, Jul. 2005, PMID: 16112549.

[15] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural
networks,” IEEE Transactions on Signal Processing, vol. 45,
no. 11, pp. 2673–2681, Nov. 1997.

[16] M. Liwicki, A. Graves, H. Bunke, and J. Schmidhuber, “A
novel approach to on-line handwriting recognition based on
bidirectional long short-term memory networks,” In Pro-
ceedings of the 9TH International Conference on Document
Analysis and Recognition, ICDAR 2007, 2007.

535

