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Abstract

Digital ink curves are typically represented as series

of points sampled at certain time intervals. We are in-

terested in the problem of how to select a minimal sub-

set of sample points to approximate a digital ink curve

within a given error bound. We present an algorithm to

find an approximation with a specified number of points

and providing the minimum cumulative error. Alterna-

tively, it may be used to select the minimum number of

points required to satisfy an error bound. The method

uses dynamic programming and has a cost linear in the

number of points.

1. Introduction

Pen input is one of the more convenient and natural

forms of entry for several kinds of input, and has there-

fore been adopted for a variety of electronic devices

such as tablets, PDAs, touch sensitive whiteboards, and

cell phones. Tied to the pen input is the notion of digital

ink. Digital ink is generated by sampling points from a

traced curve at a certain rate, and thus is typically pre-

sented in the form of a series of points, each of which

contains x and y values in a rectangular coordinate sys-

tem at a particular time t. Recognition software applica-

tions take these sequences as input. In order to accom-

modate the need of detailed analysis and high definition

rendering, higher sampling rate are used, allowing more

points to be collected within an interval of time. How-

ever, this creates more work for recognition software

applications and demands more resources for storage.

We are therefore interested in how to select a subset of

these sampled points that retain a desired degree of ac-

curacy.

We are motivated by the problem of how to precisely

approximate a digital ink curve through selecting a sub-

set of points from the original trace. We wish to reduce

the size of the subset while bounding the approxima-

tion’s error. In other words, we would like to save the

critical points that determine the shape of the curve (e.g.

turning points) and remove those which have little im-

pact (e.g. middle points on a straight line).

This is a problem for which there has been con-

siderable previous work, some of which we highlight

here. In 1986, Dunham [2] proposed an optimal al-

gorithm to find a piecewise linear approximation with

fixed initial and final points by selecting a subset of

points from the original set. The approximation is op-

timal in the sense that it contains the minimum number

of segments such that the error on each is below a uni-

form threshold. The error on each segment was taken

to be the maximal distance from the curve segment to

the line segment. In 1996, Horst and Beichl [3] intro-

duced an algorithm which used arc-chord length dif-

ference as the error. Compared to [2], this algorithm

achieved lower complexity but cannot guarantee global

optimality. In 2007, another algorithm was presented in

[5], which iteratively computes chordal deviation—the

distance between the original curve and its approxima-

tion. Points with the minimal distance are removed until

the distance becomes larger than a threshold. In 2012,

Mazalov and Watt [6] described a piecewise linear ap-

proximation algorithm to compress digital ink. That al-

gorithm is fast but suboptimal and selects points using

a combination of two error functions. All of these al-

gorithms compute the error on each curve segment and

attempt to minimize the maximum error. They do not

minimize the cumulative error which reflects the ap-

proximation’s global deviation from the original curve.

Sometimes the maximum error on each curve segment

can be small but the cumulative error large, which can

produce global distortion.

Our method is based on the observation that,

for piecewise linear approximation, removing sample

points gives approximating curves of shorter arc length.

Arc length discrepancy is additive and may be used as

a proxy for other error measures. A continuous curve

may be approximated by a piecewise linear function
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with vertices on the curve. Decreasing the arc length

discrepancy by adding points to a piecewise linear ap-

proximation decreases all the usual error measures and

cannot increase them.

We present an algorithm to find an optimal point se-

lection to approximate a piecewise linear curve. It can

be used in two ways:

• Given a digital ink curve consisting of n ≥ 2
points and a specified number of points 2 ≤ k ≤ n,

the algorithm selects a subset of k points such that

the arc length discrepancy between the approxima-

tion and the original curve is minimized.

• Given a digital ink curve and a bound on arc

length discrepancy, the algorithm selects a subset

of points of minimum number required to approx-

imate the curve to within that bound. That is, no

smaller subset of the original points can achieve

the bound.

Both uses are globally optimal and can be applied to

both open and closed, planar and space curves.

The method can be applied when other error mea-

sures are of interest. In this case, though fast and good,

the point selection is not guaranteed to be optimal. We

have used this method with a variety of error types used

in prior work, including the arc-chord length difference,

maximal height, average height, which in turn measure

the difference between the curve length and the chord

length, the maximal height from the curve to the chord,

and the average height from the curve to the chord. All

of these errors are computed on each curve segment.

The remainder of the article is organized as follows.

In section 2, we present the algorithm, its correctnes

and complexity. Section 3 reports on experiments con-

ducted to evaluate the performance of with several error

functions. Section 4 concludes the article.

2 The Approximation Algorithm

2.1 Problem Definition

We consider a digital ink curve to be a two dimen-

sional curve made up of a series of points. Our objec-

tive is to find an acceptable approximation by select-

ing a subset of points from the original ones. We have

two problems: 1) Given a digital ink curve consisting

of n ≥ 2 points and a specified number of points k,

2 ≤ k ≤ n, how can we select the k points such that

the cumulative error between the approximation and the

original curve is minimized? 2) Given a digital ink

curve consisting of n ≥ 2 points and a cumulative error

threshold ε ≥ 0, how can we select the minimum num-

ber of points required to approximate the curve such

that the cumulative error is less than or equal to ε?

Algorithm 1: Approximation by k points

Input: A digital ink curve of n points, n ≥ 2
Input: The specified number k, 2 ≤ k ≤ n

Output: The indices of the k points

begin

// The indices of the k points

S ← {};
// The minimum weight table

D ← (k + 1)× n matrix;

// Path

P ← (k + 1)× n matrix;

// Initialization

for j ← 1 to n− 1 do
D2,j ← w(v0, vj);
P2,j ← 0;

// Compute the rest of D

for m← 3 to k do

for j ← m− 1 to n− 1 do
min weight←∞;

for i← m− 2 to j − 1 do
weight← Dm−1,i + w(vi, vj);
prior vertex index← 0;

if weight < min weight then
min weight← weight;

prior vertex index← i;

Dm,j ← min weight;

Pm,j ← prior vertex index;

// Restore the path

vertex index← n− 1;

for i← 0 to k − 1 do
S ← S ∪ {vertex index};
vertex index← Pk−i,vertex index

return S
end

Both problems can be seen as graph problems. Given

a digital ink curve consisting of n points, we first as-

sign an index to each point. A weighted DAG (directed

acyclic graph) G(V,E) can be constructed from these

points, where

{

V = {vi | 0 ≤ i ≤ n− 1}
E = {(vi, vj) | 0 ≤ i < j ≤ n− 1}

(1)

The set V contains n vertices, with vi corresponding

to the i-th point pi on the digital ink curve. The DAG

will be constructed to have a unique source (vertex with

no inbound edge) and a unique sink (vertex with no out-

bound edge). The source corresponds to the initial point

p0 and the sink corresponds to the final point pn−1. The

weight of each edge is defined as:

w(vi, vj) = errorFn(pi, pj) (2)
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The error function errorFn(pi, pj) is given before-

hand. It measures the approximation error on the curve

segment determined by pi and pj . Different error func-

tions can be applied to compute for different error types.

Section 2.3 will explain the error types in detail.

The first problem is now equivalent to finding a path

from the source to the sink consisting of k vertices with

minimum total weight. The second problem is equiva-

lent to finding the shortest path from the source to the

sink such that the total weight is less or equal to the

given threshold.

2.2 Algorithm

Both paths are guaranteed to exist and can be found

using dynamic programming. Given a graph G(V,E),
we define a matrix D, where Dm,j represents the min-

imum total weight of the path from the source, v0, to

vertex vj including m vertices. Initially, we assign

D2,j =

{

∞ if j = 0
w(v0, vj) if 0 < j ≤ n− 1

For m ≥ 3, Dm,j can be computed as:

Dm,j =

{

min
m−2≤i<j

{Dm−1,i + w(vi, vj)} if j ≥ m− 1

∞ otherwise

Therefore, finding the minimum cumulative error of
a k-point approximation is simply to compute Dk,n−1,

where k is the specified number of points and n − 1 is

the index of the final point on the original curve. The

complete algorithm to select the k points is shown in

Algorithm 1.

Similar to Algorithm 1, finding an approximation

consisting of the minimum number of points such that

the cumulative error is within a given threshold, ε, is

achieved by exiting the loop with a break statement.

We keep computing Dm,n−1 for m = 2 . . . n until we

find the first m that makes Dm,n−1 ≤ ε. For additive er-

rors, the m is guaranteed to exist as the cumulative error

decreases when more points are selected and reaches 0
when all points are selected. The complete algorithm is

laid out in Algorithm 2.

2.3 Error Types

We construct digital ink curves using linear and cu-

bic spline interpolation methods since they are com-

monly used in the area of digital ink rendering, hand-

writing recognition, and handwriting neatening. By se-

lecting a subset of points, the approximation algorithm

introduces differences between the approximation and

the original curve. These differences introduce error.

The error is measured on each segment (i.e. the inter-

val between each pair of points on the curve), and we

assign zero to the error on the segment formed by any

two consecutive points. Errors can be cumulated along

the approximated curve, which reflects the global devi-

ation from the original one. As digital ink curves may

be generated in different scales, we normalize each by

its arc length in order to evaluate the error fairly.

Algorithm 2: Approximation by error threshold

Input: A digital ink curve of n points, n ≥ 2
Input: The error threshold ε, ε ≥ 0
Output: The indices of the selected points

begin

// The selected points

S ← {};
// The minimum weight table

D ← (n+ 1)× n matrix;

// Path

P ← (n+ 1)× n matrix;

// The smallest m that makes Dm,n−1 ≤ ε

m∗ = 2;

// Initialization

for j ← 1 to n− 1 do
D2,j ← w(v0, vj);
P2,j ← 0;

if D2,n−1 > ε then

// Compute the rest of D

for m← 3 to n do

for j ← m− 1 to n− 1 do
min weight←∞;

for i← m− 2 to j − 1 do
weight←
Dm−1,i + w(vi, vj);
prior vertex index← 0;

if weight < min weight

then
min weight← weight;

prior vertex index← i;

Dm,j ← min weight;

Pm,j ← prior vertex index;

if Dm,n−1 ≤ ε then
m∗ ← m;

break;

// Restore the path

vertex index← n− 1;

for i← 0 to m∗ − 1 do
S ← S ∪ {vertex index};
vertex index← Pm∗−i,vertex index

return S
end

As we are interested in minimizing the global devi-

ation error, we choose error types based on three crite-

ria. A good type of error should be computationally
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(a)

(b)

(c)

Figure 1. Error types: (a) Arc-Chord

Length Error, (b) Maximal Height Error,
and (c) Average Height Error. The curve
is constructed using cubic spline interpo-
lation.

efficient, additive, and has a natural meaning in ge-

ometry. In this article, we consider three types: Arc-

Chord Length Error, Maximal Height Error, and Aver-

age Height Error.

• Arc-Chord Length Error measures the differ-

ence between the sum of the arc length of each

curve piece and the length of the chord. An ex-

ample is shown in Figure 1(a). The error on the

segment (pi, pi+3) is computed as Si + Si+1 +
Si+2 + Si+3 − Ci,i+3, where S is the arc length

of the curve piece and C is the chord length.

• Maximal Height Error measures the maximal

distance between the curve segment and the line

segment. An example is shown in Figure 1(b).

• Average Height Error measures the average dis-

tance between the curve segment and the line seg-

ment. An example is shown in Figure 1(c).

2.4 Correctness

Selecting the m-th point is a process of computing

Dm,n−1, where n − 1 is the index of the final point on

the original digital ink curve. Since

Dm,n−1 = min
m−2≤i<n−1

{Dm−1,i + w(vi, vn−1)},

we can recursively compute Dm,n−1, m = 3 . . . n using

dynamic programming with the given initial condition

D2,i = w(v0, vi), 0 < i ≤ n − 1. This is a partic-

ular application of the Principle of Optimality [1] and

Dm,n−1 will be the minimum cumulative error of the

approximation consisting of m points.

Since the Arc-Chord Length error is additive, the

matrix D has the following properties: with the increase

of m, Dm,n−1 decreases and reaches 0 when m = n.

But for the other two types errors, the matrix D may

not have the property that Dm,n−1 ≤ Dm′,n−1 when

m′ ≥ m. However, since Dn,n−1 is 0 in either case, we

can always use the algorithm to find the solution.

2.5 Complexity

The complexity to find the k-point approximation

is O(kn2). To see this, note we are computing a ma-

trix. To select k poitns, it is necessary to compute k

rows. Since each row has n entries, we have a total cost

of O(kn2). Finding an approximation within a given

cumulative error threshold ε, in the worst case that all

points on the original digital curve need to be selected,

giving complexity O(n3).
The both complexities can be reduced if we look

at only a fixed number of prior vertices in computing

Dm,j , but the approximation result may no longer be

globally optimal.

3 Experiments

Figure 2 shows an example of applying Algorithm 1

to a digital ink curve. The digital ink curve consists

of 55 points which are marked as black dots. The red

dots are the selected points in the approximation. The

error adopted here is the Arc-Chord Length Error. In-

creasing the number of selected points from 5 to 20, the

approximation approaches the original digital ink curve

quickly.

Figure 3 shows an example of applying Algorithm 2.

The digital ink curve consists of 51 points which are

marked as black dots. The red dots are the selected

points in the approximation. The error adopted here is

the Arc-Chord Length Error. As we decrease the error

threshold ε, more points are selected in order to restrict

the cumulative error within ε. When the error thresh-

old drops to 0.001, the approximation is almost as the
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(a) (b)

(c) (d)

Figure 2. Approximation of symbol “6”
by specified number of points k. The
black points are the points on the origi-
nal curve. The red points are the approx-
imation. The error is the arc-chord length
error. We use e to denote the cumulative
error. (a) k = 5, e = 0.052. (b) k = 10,
e = 0.013. (c) k = 15, e = 0.005. (d) k = 20,
e = 0.002.

same as the original digital ink curve. But the number

of points selected in the approximation is only half of

the size of the original.

We have discussed three types of error in Section 2.3.

To give a general idea of the performance for each error

type, we have tested our algorithms against a handwrit-

ing dataset. The handwriting dataset we used is that of

LaViola [4], containing 10665 symbols, mostly Latin

letters and digits. Altogether there are 13203 strokes in

these symbols. We constructed digital ink curves from

these strokes using linear and cubic spline interpola-

tion since they are commonly used in the area of digital

ink rendering, handwriting recognition, and handwrit-

ing neatening. All of the curves were normalized by arc

length in advance. We measured the average time cost

in milliseconds and average cumulative error (relative

to the trace length) on each digital ink curve. Figure 4

shows the average time cost of applying different er-

ror types in Algorithm 1. We see that the Arc-Chord

Length Error outperforms the others in both linear and

cubic spline cases. Figure 5 shows the average cumu-

lative error of applying different error types in Algo-

rithm 1. With the increase of the specified number of

(a) (b)

(c) (d)

(e) (f)

Figure 3. Approximation of symbol “n”
by cumulative error threshold ε. The
black points are the points on the original
curve. The red points are the approxima-
tion. The error is the Arc-Chord Length
Error. We use s and e to denote the num-
ber of selected points and the cumulative
error, respectively. (a) ε = 0.05, s = 6,
e = 0.0459. (b) ε = 0.02, s = 9, e = 0.0182.
(c) ε = 0.01, s = 12, e = 0.0093. (d) ε = 0.005,
s = 16, e = 0.004. (e) ε = 0.002, s = 19,
e = 0.0018. (f)ε = 0.001, s = 23, e = 0.0009.

points, the average cumulative errors of all types drop

dramatically, but takes longer to compute.

Evaluation of these error types can be conducted in

different ways. Since the approximated curve and origi-

nal curve share the same initial and final points, one can

compare the area enclosed by the two curves. A smaller

area indicates that the approximated curve in general

looks more similar to the original one, which suggests a

better approximation. When the enclosed area becomes

0, the approximated curve will overlap the original one

and both curves will look exactly same. An alterna-

tive way to evaluate these error types is to compare the

arc length between the approximated curve and origi-

nal one. Since the two curves share the same initial and

final points and our point selection is a subset of the en-

tire point set, one can compute the difference between

the arc length of the approximated curve and of the orig-

inal curve. A smaller difference suggests a higher sim-

ilarity and a better approximation. Figure 6 shows the

average similarity which is defined as the arc length of

the approximated curve divided by the arc length of the

original curve. With the increase of the specified num-
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Figure 4. The average time cost of using
different error types in Algorithm 1.

Figure 5. The average cumulative error of
using different error types in Algorithm 1.

ber of points, the arc length of the approximated curves

approaches the arc length of original curve quickly.

4 Conclusion

We have presented an algorithm to select a subset

of points to optimally approximate a digital ink curve.

In particular, it is able to find an approximation with

a specified number of points and providing the mini-

mum cumulative error or to select the minimum num-

ber of points required to satisfy a given error threshold.

The algorithm is based on dynamic programming and

has a cost linear in the number of points selected. The

algorithm is independent of the choice of error func-

tion, and we have examined its performance with three:

the Arc-Chord Length Error, the Maximal Height Er-

ror, and the Average Height Error. These were chosen

for their computational efficiency and natural geomet-

ric meaning. Our experiments have shown that the Arc-

Chord Length Error outperforms the others in terms of

average time cost in both linear and cubic spline cases.

There are a few interesting directions we would like

Figure 6. The average similarity be-
tween the approximated curve and origi-
nal curve.

to pursue in the future. First, in addition to the cumu-

lative error, we would like to restrict the error on each

segment. This would allow control of the local devia-

tion as well as the global deviation. Second, we wish to

perform measurements with more types of error, includ-

ing those involving differences in the spatial derivatives.

We would like to thank Enxin Wu, a Ph.D. candidate

in the Department of Mathematics at the University of

Western Ontario, for several useful discussions.
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