
Fast Feature Selection for Handwritten Digit Recognition

Hassan Chouaib, Florence Cloppet and Nicole Vincent

Laboratoire LIPADE

Université Paris Descartes

Paris, France

Email: firstname.lastname@mi.parisdescartes.fr

Abstract—Feature selection happens to be an important step
in any classification process. Its aim is to reduce the number
of features and at the same time to try to maintain or even
improve the performance of the used classifier. Variability of
handwriting makes features more or less efficient and gives a
good support for evaluation of selection method. The selection
methods described in the literature present some limitations
at different levels. Some are too complex or too dependent on
the classifier used for evaluation. Others overlook interactions
between features. In this paper, we propose a fast selection
method based on a genetic algorithm. Each feature is closely
associated with a single feature classifier. The weak classifiers
we consider have several degrees of freedom and are optimized
on the training dataset. The classifier subsets are evaluated by
a fitness function based on a combination of single feature
classifiers. Results on the MNIST handwritten digits database
show how robust our approach is and how efficient the method
is.

Keywords-Feature selection; Classifier combination; Hand-
written Digit Recognition; Genetic algorithm; AWFO

I. INTRODUCTION

In the field of handwritten digits recognition, variability

of handwriting represents a challenge. Then many recog-

nition system have been proposed and many works have

been devoted to feature definition. High dimension spaces

are often used as representation spaces. Many handwritten

recognition system have been proposed and tested on the

MNIST database [1] [2]. In our case the aim is not to propose

a handwritten digit recognition system, but to show the effi-

ciency of our fast feature selection method for such systems.

Reducing vector dimensionality is often considered as a pre-

processing step dedicated to noise and redundant information

elimination. One type of dimensionality reduction methods

is feature selection.

Existing feature selection methods reveal limitations on

many levels such as complexity, interaction between the

features, dependency on the evaluation classifier, and so on.

In order to overcome these limitations, we introduce a new

method for feature selection. It is based on selecting the best

classifier combination from a set of simple classifiers.

The paper is organized as follows. In section II, we motivate

our choices, in section III, we introduce our Fast Feature

Selection Method (FFSM). In section IV an extensive exper-

imental study on the MNIST database is carried out. Finally,

conclusions are drawn and perspectives are given in section

V.

II. FEATURE SELECTION

Feature selection is generally defined as a search process

to find a ”relevant” feature subset from an initial feature set.

The relevance of a feature set always depends on objectives

and criteria. A selection method [3] generally incorporates

several steps: First a search starting point is set then subsets

are evaluated and a search strategy is applied to make the

subset evolve.

In general, search strategies can be classified into three

categories: exhaustive, heuristic and random. The evaluation

function computes the suitability of the selected subset and

compares it with the previous best candidate, replacing it

if the current subset is estimated as being better. Besides,

feature selection algorithms may be classified into two

categories depending on their evaluation procedure filter or

wrapper.

A. Filter approach

The ”filter” model was the first one used in feature

selection. The used criterion for feature relevance evaluation

is based on measures that rely on training data properties.

This type of method is considered more as a pre-processing

step (filtering) done before the training one. In other words,

evaluation is generally done independently of any classifier

[4]. Methods that are based on this feature evaluation model

were developed in [5][6][7][8]. Most of them use an heuristic

or random approach as search strategy.

The main advantage of filtering methods is their compu-

tational efficiency and robustness against over-fitting. Un-

fortunately, these methods do not take into account inter-

actions between features and tend to select features that are

redundant rather than complementary [9]. Furthermore, these

methods do not absolutely take into account the performance

of classification methods subsequent to selection [10].

B. Wrapper approach

As seen in the previous section, the main drawback of

”filter” approaches is that they ignore the potential influence

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.203

483

of the selected features on the performance of the classifiers

to be used later. To solve this problem Kohavi and John

introduced the concept of ”wrapper” for feature selection

[10]. The ”wrapper” methods evaluate feature subsets on

the basis of their classification performances using a learning

algorithm.

This evaluation is done using a classifier that estimates

the relevance of a given feature subset. The feature subset

selected is always well adapted to the used classification

algorithm but it is not necessarily valid if the classifier is

changed. The complexity of the learning algorithm makes

the wrapper methods rather expensive regarding time com-

plexity. As the complexity drawback of this technique makes

it impossible to use exhaustive search strategy (NP-complete

problem), heuristics or random search strategies are often

preferred. However, even in this case, the search becomes

more and more inconceivable as the initial feature set size

increases.

The wrapper methods are generally considered to be better

than the filtering methods according to [11], [10]. They are

able to select small feature subsets which are efficient for

the used classifier, nevertheless the wrapper methods have

two main drawbacks :

• Complexity and computation time

• Dependency of selected features on the classifier

C. Genetic algorithms and feature selection

Genetic algorithms (GA) are one of the latest techniques

in the field of feature selection [12],[13]. Unlike classical

feature selection strategies where one solution is optimized,

a population of solutions can be modified at the same

time. one should encode its potential solutions by finite

strings of bits forming chromosomes of the candidate points

population. The fitness function can be defined using filter

or wrapper models.

The fitness evaluation of a genetic algorithm for feature

selection, can be very costly as there are many generations of

many feature subsets that must be evaluated. This is particu-

larly a problem for wrapper approaches where classifiers are

induced and evaluated for each chromosome. To limit this

problem we propose to find a classifier that takes advantage

of both filter and wrapper approaches.

- filter methods: quality is associated with each feature.

- wrapper methods: a classifier efficiency is optimized.

These objectives represent the main idea of our new fast

feature selection method described in the next section.

III. PROPOSED FFSM METHOD

On one side, filtering methods for feature selection have

limitations with regard to the consideration of potential inter-

actions between features. On the other side, wrapper meth-

ods present a very high time complexity and dependence

on the classifier evaluation. Filtering methods derive their

rapidity from taking into account features in an individual

manner. We retain this idea by building a set of classifiers,

each associated with one feature. They will be defined in

section III-B. The overall vision of the wrapper method is

preserved while considering a selection criterion that takes

into account all the used features. This is implemented in a

GA whose fitness function will be detailed in section III-C.

Thus, we consider interactions between features. Finally, the

features associated with the subset of classifiers selected at

the last iteration represent the final feature subset. First, in

section III-A, an overall vision of FFSM method is given.

A. Selection process

Let set F = {f1, f2, .., fN} be composed of N features

and Bapp = {X1, X2, .., XM} be a training dataset con-

sisting of M samples where each Xi = (fi1, fi2, .., fiN)
represents the ith sample. A sample of dimension N is

represented by a vector whose components are the values

of features (fi), where N is the total number of features.

Let Y = {y1, y2, .., yM} be the sample labels. For a bi-class

classification problem we have yi ∈ {−1, 1} . The training

set Bapp is divided into two parts: a training dataset A and

a validation dataset V . Our feature selection method is in

two steps:

• Construction of N simple classifiers Hi. For each Hi,

only the ithfeature fi is taken into account.

• Selection of classifiers (Hi) by using a GA.

B. Classifier set

In this step, a set of classifiers is built so that each

element is trained on only one feature. A classifier learnt on

a single feature is a simple model defined using a learning

algorithm based on the training dataset A and which only

takes into account one feature at a time. Such classifier

must be simple and as efficient as possible on a single

feature.

To build such classifiers, we propose to take advantage of

two approaches. One is to compute a single classification

threshold, the other is to combine different weak classifiers

in a strong classifier in order to obtain classifiers with

multiple classification thresholds. This makes our approach

original.

[14] use single classification threshold hereafter named

”Classif Alamdari”. The threshold that was used is the

midpoint of a segment whose endpoints are the barycentre

of data feature values in each class. Another classifier of

this type is the ”decision stump” [15]. It defines the best

threshold that minimizes the classification error on a single

feature.

As only one feature is considered at a time, we propose to

introduce multiple classification thresholds in the classifier

building. To do that, we associate a threshold with the nodes

of a decision tree [16], or use AdaBoost algorithm [17]

from weak classifiers of type ”decision stump” computed

484

Figure 1. Multiple threshold classifier: (a)Decision stump case
(b)Adaboost case

on different sample sets. Then, an H classifier is associated

with feature f. This is illustrated in figure 1.

It is among these classifiers that a subset, optimizing the

defined criterion, will be extracted. This optimization will

be carried out by a GA. It is then necessary to encode the

subsets. The most classical way consists in encoding each

possible solution by a binary string of size equal to the

total number of classifiers. A gene of index i has the value

1 if the initial set ith classifier is present in the current

subset and 0 otherwise. We denote by C = (c1, c2, .., cN)
a chromosome where each ci ∈ {0, 1} and Sc is the set:

{i/ci = 1}.

C. Selection criterion

The matter is to find a subset having a reduced number of

highly efficient classifiers. In wrapper methods, the fitness

function is related to the building of a new classifier based

on features that are involved in the individual. To overcome

the heaviness of this approach, we made a compromise. We

build a new classifier that does not need a training phase but

involves all the features present in the individual. We can

notice that the already built classifiers provide more adapted

information to the problem than features themselves. Thus

each selected classifier participates in the decision making.

Therefore, we introduce a classifier built as a combination

of classifiers.

Hc = Combi∈Sc
(Hi) (1)

where Combi∈Sc
(Hi) is the combination of classifiers

present in an individual. Thus, for the GA fitness function,

we compute the error given by this new classifier. It can be

written as:

fitness = error(Hc) (2)

We present below an example that shows how to compute

the fitness of an individual:

Given a set of classifiers (in this example, Adaboost clas-

sifiers) H = {H1, H2, .., H12} which contain twelve clas-

sifiers, where Hi =
∑T

t=1 αithit, i ∈ {1, 2, 3, .., 12}
and T is the number of AdaBoost iterations. Let I =
”100110010110” an individual for which six out of

twelve classifiers are present. If we use the mean as a

method for combining the classifiers then Combi∈Sc
(Hi) =

1
6

∑

k(
∑T

t=1 αkthkt), the fitness function of I will be calcu-

lated as follows:

fitness(I) = error(sign(16
∑

k(
∑T

t=1 αkthkt))) where

k ∈ {1, 4, 5, 8, 10, 11}

The Comb operator can take many forms that will be studied

in the following section.

For combining classifiers, we used several conventional

combining methods such as majority voting, weighted

majority voting, mean, weighted mean, median. Another

method was used called AWFO (Aggregation Weight-

Functional Operators) [18]. For the AWFO method we

propose a modification to make it better adapted to our case.

In our case of a two-class classification, the two classes

have an equivalent status, making it impossible to define

a distinguished valuewith a significant value with respect

to the problem. We want to combine classifiers whose

answers are between -1 and +1 (-1 being associated with an

element of the first class and +1 characterizing an element

of the second class). Therefore, we have chosen to aggregate

separately the positive and the negative values. Refering to

the original method, we have two optimal values. Thus, we

have two distinguished values. The AWFO method does not

only consider the classifier’s answer but also the distribution

of all answers to achieve aggregation. Then weight formula

becomes:

W (xi) =
dcum(xi)
∑

sign(xj)=sign(xi)

dj
(3)

where



















dcum(xi) =
∑

j∈Ei

dj with

Ei = {j/(dj ≥ di) & (sign(xj) = sign(xi))}
and

di = 1− |xi|
Finally, in case of negative answer very close to -1 and

if we have a lot of negative answers, the cumulative sum

of distances increases and its weight will be high. Similarly

for an answer very close to 1.

IV. EXPERIMENTS AND VALIDATION

In this section we present the experiments carried. We

first describe several representation spaces and we compare

the results with those obtained by other feature selection

methods.

A. Databases and experimental protocol

For our experiments we used five feature databases. They

have been built using different descriptors:

485

• Generic Fourier descriptor (GFD)[19]: is a descriptor

based on Fourier transform. The radial (R) and angular

resolutions (T) represent two of its parameters. We have

used two different values of R and T. For (R=8,T=12),

we obtain 96 features and for (R=10,T=15) we obtain

150 features. In the following, we use names ”GFD1”

and ”GFD2” for these representation spaces.

• R-signature [20]: uses Radon transform to represent

an image. There are 180 features in this descriptor

hereafter named ”R sig”.

• Zernike descriptor [21]: is a descriptor based on Zernike

moments. In our case, 66 moments are used.

• Luminance of the pixels. This descriptors is composed

of 784 features hereafter named ”Pixel”.

Features of each descriptor are calculated on the MNIST

database. It is a database of isolated handwritten digits

(from 0 to 9) built in 1998 [22]. Each digit is associated

with an image of size 28 x 28 in 256 grey levels (example

in Figure 2). The MNIST database is divided into two

subsets, a training set of 60 000 examples and a test set of

10 000 examples.

Figure 2. Samples of images extracted from the MNIST database

We process a priori two-class problems, in the more

general case of n classes it is necessary to build subsets

within the labelled sample set to allow the use of a ”one

versus all” approach. Each subset is associated with a

class. Let A = {Ai}, V = {Vi} and T = {Ti}, which

represents respectively training, validation and test datasets.

Ai, Vi and Ti are constructed for the use of a ”one versus

all” method. On the one hand, each of the Ai datasets

and Ti contain 2*N samples: N samples of class i and N

samples of all the other classes. On the other hand Vi only

contains N elements: N
2 samples of class i and N

2 samples

of all the other classes. For the MNIST dataset we have

i ∈ {0, 1, 2, .., 9} and N = 1000.

B. Results

In this section we made the different elements of our

method vary: the nature of the classifiers, the nature of

combination classifiers involved in the fitness function.

Table I shows the average number of selected features for

each descriptor on the ten classes of MNIST database using

Adaboost classifiers and AWFO combination method. We

note that the final subsets are on average 69.9% smaller than

the initial set. To evaluate the quality of the subsets found

by the FFSM method, we used an SVM classifier learnt on

training datasets Ai and tested on datasets Ti. The first and

Table I
NUMBER OF SELECTED FEATURES FOR EACH DESCRIPTOR USED FOR

DIGIT RECOGNITION

Zer GFD1 GFD2 R-sig Pix

Initial 66 96 150 180 784

Mean 25 30 46 42 245

% reduction 66.12 68.75 69.33 76.66 68.75

the last line of table II shows the classification average rate

for each descriptor before and after selection. we can notice

that we managed to select feature subsets 69.9% smaller than

the originals sets but with roughly the same quality. Table

Table II
COMPARISON OF RESULTS DRAWN FROM SEVERAL CLASSIFIERS

Zer GFD1 GFD2 R-sig Pix

AdaBoost 92.42 92.55 92.1 79.55 97.6

classif Alamdari 91.50 90.15 90.85 74.15 93.85

decison stump 92.05 92.05 91.95 79.25 97.45

Decision trees 91.95 92.17 91.85 79.35 97.50

No selection 92.47 92.38 91.97 75.95 97.73

II shows also the best results obtained for each classifier set

and for each descriptor. From such results we can conclude

that AdaBoost classifiers give the best selection result and

the single threshold classifier are less efficient.

Finally we compared the selection results using different

combining methods. Table III shows the comparison results

averaged on ten classes. We can notice that the results for

the three combining methods AWFO, mean and weighted

mean are close for various used descriptors and are more

efficient than the majority voting, weighted majority voting

and median combining methods.

Table III
COMPARISON OF THE DIFFERENT COMBINING METHODS

Zer GFD1 GFD2 R-sig Pix

AWFO 92.25 92.55 92.08 79.19 97.60

Mean 92.42 91.90 91.95 79.04 97.40

Weighted mean 92.28 92.34 92.10 79.55 97.55

Majority voting 91.71 90.55 91.65 77.38 96.80

Weighted voting 91.95 91.95 90.98 79.05 97.20

Median 92.14 91.06 92.05 78.25 97.5

No selection 92.47 92.38 91.97 75.95 97.73

C. Comparison with other methods

We compared our selection method with three other

existing methods. We considered three methods: Relief [5],

SAC [6] and the third one is a classic wrapper method

based on random search and using the same GA as our

method, but with a different fitness function defined by

the classification error of a SVM classifier. These methods

are based on different evaluation approaches which are

filter(Relief and SAC) and wrapper (Wrapper SVM). Table

IV shows the comparison of results between our method and

other selection methods. Results are computed on the mean

486

Table IV
COMPARISON WITH OTHER METHODS FOR EACH DESCRIPTOR

Relief Wrapper SVM SAC FFSM

Zernike 89.85 92.61 91.11 92.42

GFD1 90.05 92.55 91.15 92.55

GFD2 90.15 92.01 91.45 92.10

R-signature 73.55 80.05 75.88 79.55

Pixels 95.85 97.68 96.35 97.60

of ten classes taken from the MNIST dataset.

Table V
COMPARISON OF COMPUTATION RELATIVE TIME FOR FEATURE

SELECTION AND NUMBER OF SELECTED FEATURES WITH FFSM

METHOD AND THE Wrapper SVM METHOD

FFSM Wrapper svm

features Time Time # features

Zer 22 0.001 0.13 36

GFD1 30 0.0015 0.22 52

GFD2 46 0.0022 0.28 65

R-sig 42 0.0026 0.36 79

Pix 245 0.004 1 299

We can notice that our method is significantly better than

Relief and SAC methods. These results are very close to the

Wrapper SVM method for all descriptors (Table IV), but the

computation time of our method is significantly lower than

the one of the Wrapper SVM method . Table V shows on

the one hand, that our method, in worst case is 125 times

faster and 250 times faster in the best case (for the descriptor

Pixels) and on the other hand that the size of feature subsets

selected by our method, is 6% smaller in worst case and

15% smaller in the best case. The reference time concerns

the case of 784 features on a bi-class problem, processed by

a matlab (c) software on a 2GHz processor computer. The

duration is equal to 489 minutes.

V. CONCLUSION

In this paper, a combination of single feature classifiers

and a genetic algorithm are used to define a new fast feature

selection method. The fitness function used is based on a

combination of single feature classifiers. Many classifiers

and combining methods are evaluated. Our experiments on

the MNIST dataset show that similar classification rate can

be obtained using about 69.9% less features for different

descriptors. Moreover, the proposed method is faster, in

the worst case, 125 times than a classical wrapper method.

Therefore, the robustness of the proposed approach is con-

firmed.

Future works will be devoted to study the classifier’s di-

versity to minimize redundancy. Thus, a multi-objective ap-

proach can be used to integrate this new objective. Another

perspective is to select features using hierarchical approach

applied at several levels (feature and descriptor).

REFERENCES

[1] J.-X. Dong, A. Krzyzak, and C. Y. Suen, “Fast svm training
algorithm with decomposition on very large data sets,” IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE, vol. 27, no. 4, pp. 603–618, 2005.

[2] C.-L. Liu, K. Nakashima, H. Sako, and H. Fujisawa, “Hand-
written digit recognition using state-of-the-art techniques,” in
Proceedings of the Eighth International Workshop on Fron-
tiers in Handwriting Recognition, Washington, DC, USA,
2002, p. 320.

[3] H. Liu and L. Yu, “Toward integrating feature selection al-
gorithms for classification and clustering,” IEEE Transations
on Knowledge and Data Engineering, vol. 17, pp. 491–502,
2005.

[4] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features
and the subset selection problem,” in Machine Learning: Pro-
ceedings of the Eleventh International Conference. Morgan
Kaufmann, 1994, pp. 121–129.

[5] K. Kira and L. A. Rendell, “The feature selection problem:
Traditional methods and a new algorithm.” in AAAI. Cam-
bridge, MA, USA: AAAI Press and MIT Press, 1992, pp.
129–134.

[6] R. Kachouri, K. Djemal, and H. Maaref, “Adaptive feature
selection for heterogeneous image databases,” in Second IEEE
International Conference on Image Processing Theory, Tools
38; Applications, 10, K. Djemal and M. Deriche, Eds., Paris,
France, 2010.

[7] H. Almuallim and T. G. Dietterich, “Learning with many
irrelevant features,” in In Proceedings of the Ninth National
Conference on Artificial Intelligence. AAAI Press, 1991, pp.
547–552.

[8] L. P. Cordella, C. D. Stefano, F. Fontanella, and C. Marrocco,
“A feature selection algorithm for handwritten character
recognition.” in ICPR’08, 2008, pp. 1–4.

[9] I. Guyon and A. Elisseeff, “An introduction to
variable and feature selection,” J. Mach. Learn. Res.,
vol. 3, pp. 1157–1182, March 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?id=944919.944968

[10] R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artif. Intell., vol. 97, pp. 273–324, December 1997.

[11] Y. Li and L. Guo, “Tcm-knn scheme for network
anomaly detection using feature-based optimizations,”
in Proceedings of the 2008 ACM symposium on
Applied computing, ser. SAC ’08. New York, NY,
USA: ACM, 2008, pp. 2103–2109. [Online]. Available:
http://doi.acm.org/10.1145/1363686.1364194

[12] F. E. Kitoogo and V. Baryamureeba, “A methodology for
feature selection in named entity recognition,” International
Journal of Computing and ICT, pp. 18–26, 2007.

[13] L. S. Oliveira, R. Sabourin, F. Bortolozzi, and C. Y. Suen,
“Feature selection using multi-objective genetic algorithms
for handwritten digit recognition,” in Proceedings of the 16
th International Conference on Pattern Recognition Volume
1, ser. ICPR ’02. Washington, DC, USA: IEEE Computer
Society, 2002.

487

[14] A. Alamdari, “Variable selection using correlation and single
variable classifier methods: Applications,” in Feature Extrac-
tion, ser. Studies in Fuzziness and Soft Computing, 2006, vol.
207, pp. 343–358.

[15] W. Iba and P. Langley, “Induction of one-level decision
trees,” in Proceedings of the ninth international workshop
on Machine learning, ser. ML92, San Francisco, CA, USA,
1992, pp. 233–240.

[16] L. Breiman et al., Classification and Regression Trees. New
York: Chapman and Hall, 1984.

[17] Y. Freund and R. E. Schapire, “A decision-theoretic general-
ization of on-line learning and an application to boosting,” in
Proceedings of the Second European Conference on Compu-
tational Learning Theory, London, UK, 1995, pp. 23–37.

[18] C. Dujet and N. Vincent, “Feature selection for classification,”
International journal of intelligent system, vol. 13, pp. 131–
156, 1998.

[19] D. Zhang and G. Lu, “Shape based image retrieval using
generic fourier descriptors,” in Signal Processing: Image
Communication 17, 2002, pp. 825–848.

[20] S. Tabbone and L. Wendling, “Binary shape normalization
using the Radon transform,” in 11th International Conference
on Discrete Geometry for Computer Imagery - DGCI’2003,
ser. Lecture Notes in Computer Science, vol. 2886. Naples,
Italy: Springer, 2003, Colloque avec actes et comité de
lecture. Internationale.

[21] H. Kim, J. Kim, D. Sim, and D. Oh, “A modified zernike
moment shape descriptor invariant to translation rotation and
scale for similarity-based image retrieval,” in ICME00, 2000,
p. MP5.

[22] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” in Proceed-
ings of the IEEE, 1998, pp. 2278–2324.

488

