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Abstract

The ambitious goal of this research is to understand

the real distribution of character patterns. Ideally, if we

can collect all possible character patterns, we can to-

tally understand how they are distributed in the image

space. In addition, we also have the perfect character

recognizer because we know the correct class for any

character image. Of course, it is practically impos-

sible to collect all those patterns — however, if we

collect character patterns massively and analyze how

the distribution changes according to the increase of

patterns, we will be able to estimate the real distribu-

tion asymptotically. For this purpose, we use 822,714

manually ground-truthed 32 × 32 handwritten digit

patterns in this paper. The distribution of those patterns

are observed by nearest neighbor analysis and network

analysis, both of which do not make any approximation

(such as low-dimensional representation) and thus do

not corrupt the details of the distribution.
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I. Introduction

Needless to say, pattern distribution is the most

important factor for pattern recognition. For example,

if we know that patterns are characterized by Gaussian

distributions, we can derive a quadratic discriminant

function as the optimal classifier. If we know that

patterns distribute in a low-dimensional manifold, we

will introduce some dimensionality reduction tech-

niques for feature extraction. If we know that patterns

distribute as groups, we will introduce some clustering

techniques for understanding representative patterns of

individual groups.

Unfortunately, it is generally impossible to know

the true distribution of patterns. For example, if we

want to know the true distribution of 100× 100 24-bit

color images, we must collect ground-truthed 2
240,000

images. However, if we make as much effort as pos-

sible to approach the true distribution asymptotically

and then understand the trend of the distribution in

various viewpoints, we can enhance the pattern recog-

nition accuracy and/or develop new pattern recognition

strategies.

This paper tries to understand the true pattern

distribution as accurate as possible through various

qualitative and quantitative analyses. For this ambitious

purpose, 822,714 manually ground-truthed handwritten

isolated digit patterns (“0”,. . ., “9”) are used. As em-

phasized in Section II, digit patterns are more suitable

than general image patterns for this purpose in the

several points.

As the tools for the distribution analyses, we will

use nearest neighbor (NN) analysis and network anal-

ysis. NN analysis is simple but powerful in the sense

that it can provide not only the 1-NN distance-based

recognition accuracy but also the distribution of 1-

NN distances, and so on. This distance distribution is

useful to understand the global properties of the pattern

distribution. As a unique application of NN analysis,

we will also show results of image completion using

1-NN pattern.

Network analysis is also promising approach for

analyzing the topological structure of pattern distribu-

tion. Nowadays, various large-scale network analyses

are performed for complex network (e.g., scale-free

network), graph mining, etc. In this paper, we will

employ the minimum spanning tree (MST) as the

network representation of massive character patterns

and then analyze its structure in various ways.

Instead of popular lower-dimensional visualizations

for distribution analysis, we adhere to use those ap-

proaches in this paper. This is because they realize

simpler and lossless analyses. In other words, lower-

dimensional visualization generally causes some ap-

proximation error, which may conceal important prop-

erties of “minorities” in the distribution.
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II. Related Work

Recent computer hardware development allows us

to process “big data”. In fact, this trend is accelerating

in image processing and pattern recognition. For exam-

ple, we can access ground-truthed 11 million images

of ImageNet [1]. (Now ImageNet contains 14 million

images.) Torralba et al. [2] prepared a huge dataset

with 80 million images gathered from the Internet

and resized into 32×32 pixels. They showed that high

recognition accuracy was achieved not by a complex

and sophisticated recognition method but just by the

simplest 1-NN rule with their massive image dataset.

In addition, there are many fascinating trials using

massive image datasets and rather simple techniques,

such as [3], [4], [5], [6], [7], [8]. Although any of

those datasets are far smaller than the collection of

all possible images, those trials have often showed

asymptotic analysis results on the effects of the size

of datasets.

In this paper, we deal with “big data” of character

image patterns. From the purpose of analyzing real pat-

tern distribution, character image patterns possess the

following merits over general image patterns. (i) Since

there are only 10 classes for digits, it is possible

to have an enough number of patterns per class for

understanding the precise distribution of each class.

(ii) Small and binary character images can form a

compact feature space. (iii) The classes of character

patterns can be defined with far less ambiguity than

visual objects.

In past character recognition researches, rather

smaller datasets have been used. The well-known

MNIST dataset contains only 70,000 handwritten digit

patterns. Smith et al. [9] have done one of the largest-

scale researches with 223,000 (i.e., 1/4 of ours) hand-

written isolated digit patterns, while mainly focusing

on recognition accuracy rather than distribution analy-

sis. The CASIA-HWDB2.0-2.2 1 is a large handwritten

Chinese character dataset which contains 3,895,135

patterns — around 550 patterns for each of 7,000

classes.

III. Experimental Setup

A. Dataset

Our handwritten digit image dataset is comprised

of 822,714 patterns. Figure 1 shows several patterns

from the dataset. All of the digit patterns were first

1http://www.nlpr.ia.ac.cn/databases/

handwriting/Home.html

Figure 1. Digit images from our dataset.
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Figure 2. Error rates by 1-NN under differ-

ent dataset sizes.
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Figure 3. Distribution of 1-NN distance.
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Figure 4. The number of patterns whose

all k-NNs belong to other classes.

isolated from their original scanned images. Then the

ground-truth, i.e., correct class label (“0”,. . ., “9”), was

attached to each pattern carefully by manual inspec-

tions by several professional operators. Each pattern is

a binary image (black and white) rescaled to 32× 32

pixels.

NN analysis in Section IV was done by the leave-

one-out manner, where every pattern of 822,714 pat-

terns was treated as an input pattern and then its

NN pattern were selected from the remaining 822,713

patterns. When we use a subset of the dataset, a certain

number of patterns were randomly selected from the

remaining 822,713 patterns.
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Figure 5. Image completion by 1-NN pattern.

 0  100  200  300  400  0  100  200  300  400

Hamming distance between original and completed images
 0  100  200  300  400

random 50% pixels random 90% pixels

n
o
rm

a
liz

e
d
 f

re
q
u
e
n
cy

block (20×20 pixels)

822,714 × 100%
× 10%
× 1%

× 0.1%

Figure 6. Image completion accuracy.

B. Feature and Distance Metric

Throughout this paper, the original simple feature,

i.e., black and white pixel value is used in this paper,

since the improvement of recognition accuracy is not

our purpose. Consequently, each pattern is represented

as a 1,024-dimensional binary vector and thus corre-

sponds to a corner of the 1,024-dimensional hypercube.

Note that the analyses on this discrete distribution is

directly related to a continuous distribution by some

feature extraction. This is because most feature extrac-

tion methods are based on some linear operations and

thus properties in the original discrete distribution are

mostly preserved even in the continuous distribution.

As the distance metric, we employ Hamming dis-

tance. The value of the Hamming distance can be

interpreted intuitively. For example, if the Hamming

distance is 100 between two 32 × 32 binary patterns,

this indicates that the two patterns have different

black/white value at 100 pixels (about 10% among

1,024 pixels).

IV. Nearest Neighbor Analysis

A. 1-NN Distance Analysis

Figure 2 plots the recognition accuracy by 1-NN

discrimination under different dataset sizes. We can

roughly find a parametric relation between the dataset

size and the recognition accuracy. As shown in Fig. 2,

we can estimate that, if the dataset size increases 10

times, the error rate decreases to 40%. For example,

if we increase the dataset size to 100 times, i.e., if we

have 82 million patterns, the error rate may become

around 0.1%. Note that this logarithmic property co-

incides with the observation by Torralba [2].

Figure 3 plots the distributions of 1-NN distances

to the same class and the closest different class under

different dataset sizes. First, we observe the expected

trend that both distances decrease by increasing dataset

size. Second, we observe a more important fact that the

distance to the closest different class is lower-bounded.

In fact, even though 822 thousand patterns are densely

distributed in their image space, any pair of images

from different class have at least 20 pixels (about 2%

of all 1,024 pixels ) with different black/white color,

whereas some pair of images from the same class are

almost identical (that is, they have a distance around

zero). This fact clearly indicates that there is a certain

“gap” which differentiates one digit class from others.

Figure 4 shows the number of patterns whose all

k-NNs belong to other class2. In other words, this

graph shows the number of patterns surrounded by

one or more different classes. We can consider those

patterns as so-called outliers. The important fact is that

2Again, we used the leave-one-out manner. Accordingly, for each
of all 822,714 patterns, its k-NNs from p%× 822,713 are examined,
where p = 0.1, 1, 10, and 100.
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Figure 7. A tiny example of minimum

spanning tree.

outliers die hard; even though we increase the dataset

size, we had at least 200 outliers. Note that, as we

observed from Fig. 3, those outliers should have 20

pixel difference from their neighbors. Consequently,

these outliers are deviated from the distribution of its

class with more than 20 pixel difference.

B. Image Completion by Nearest Neighbor

The power of a large dataset was observed through

an image completion experiment. A set of pixels were

removed from an original character image and then

the values of those removed pixels are determined

by referring the 1-NN pattern. The 1-NN pattern was

selected by using the Hamming distance of the non-

removed pixels.

Figure 5 shows the completion result on several

patterns. More successful completion results are pro-

vided with larger dataset, regardless the type of pixel

removal (i.e., block and random). Surprisingly, even if

90% pixels are removed, the completion by using the

remaining 10% pixels are sometimes accurate.

Figure 6 shows the distribution of completion ac-

curacy by Hamming distance under different number

of removed pixels. When 90% pixels are removed,

the average distance is around 100 with 822 thousand

patterns. This indicates that, among 900 pixels (90%

of 1,024 original pixels), 800 pixels are correctly

completed. Note that this result indicates another pos-

sibility to make low resolution character image into

higher resolution one by using a similar idea of face

hallucination [3].

V. Network Analysis

A. Minimum Spanning Tree

In the following experiment, minimum spanning

tree (MST) was employed for representing the struc-

ture of the character pattern distribution. The node and

edge of MST are a single binary digit image and the

distance between a pair of images. Note that in this
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Figure 8. Distribution of node degree.
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Figure 9. Distribution of edge weight.

experiment, 32 × 32 images were scaled to 16 × 16

to have a more dense distribution. Figure 7 shows the

MST for a very tiny subset of our dataset.

MST has four characteristics suitable for large-scale

distribution analysis. First, the proximity between sim-

ilar patterns are preserved on MST and therefore global

structure of the pattern distribution is also preserved.

Second, similar patterns will form a cluster on MST.

For example, even the small MST of Fig. 7, images of

“0” form a cluster. Third, since MST is a tree, there is a

unique and connected path between any pair of images

(i.e, nodes). The path provides a “morphing” animation

also a class transition between the pair. Fourth, there

are efficient algorithms (e.g., Prim’s algorithm) for

constructing a large MST.

B. Statistics of MST

Figure 8 shows the distribution of node degree of

the MST for 822 thousand digit images. We observe

that the MST has more nodes with a large degree with

a larger dataset. (In other words, we have more “hub”

nodes as MST becomes larger.) This fact indicates that

the distribution is non-uniform and there are clusters.

The nodes around the center of a cluster have more
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Figure 11. Percentage of nodes of

Types (ii) and (iii).

neighbors as the dataset becomes larger.

Figure 9 shows the distribution of edge weight of

the MST. Similarly to Fig. 9, it simply shows that the

pattern distribution becomes more dense as the dataset

size becomes larger.

1) Classification of Nodes by Class Consistency:

Figure 10 shows the classification result of nodes by

their class consistency. Class consistency of a node is

one of three types, that is,

∙ Type (i): its all neighboring nodes (on MST) are

from the same class,
∙ Type (ii): its all neighboring nodes are from other

classes, and
∙ Type (iii): otherwise.

A node of Type (ii) can be considered as a kind of

outliers. A node of Type (iii) is a “bridge” connecting

two classes.

From Fig. 10, it is observed that most nodes are

Type (i). In contrast, nodes of Types (ii) and (iii)

are rare. Consequently, this result indicates each class

forms a small number of large clusters on the MST.

It coincides with the fact that support vectors, which

exist around class boundaries, are often far less than

the entire patterns.

Figure 11 plots the percentages of Types (ii) and (iii)

as another graph. An important observation is that the

percentages of both types are reduced to about 40%,

if the dataset size increases 10 times. This observation

leads two points. First, we can estimate the number of

outliers, which are related to Type (ii). Second, this

observation coincides with the result of Fig. 2 very
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Figure 13. Image sequence along with the

path between “4” and “3”. Note that the

first 14 patterns from the node “4” are

plotted.
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Figure 14. Image sequence along with the

path between two different “9”s. Note that

16 patterns were selected along the path

with the same interval.

well. In fact, the patterns of Types (ii) and (iii) have a

large possibility to be misrecognized.

C. Class Distribution on MST

As observed above, most nodes have neighbors

from the same class and thus each class maybe forms a

limited number of large clusters. For verifying this, we

construct a cluster tree, where neighboring nodes from

the same class are unified. For example, “0” nodes of

Fig. 7 are unified into one node in the cluster tree.

Two nodes spanning an edge of the cluster tree are

Type (iii).

Figure 12 shows the cluster tree created from the
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MST of all 822 thousand patterns. Each node, hereafter

called supernode, is a cluster and its label is the class of

the supernode and its size indicates the number of the

unified nodes of the original MST. For better visibility,

a supernode is omitted in this figure if it contains less

than 100 nodes and its removal does not make the

cluster tree disconnected.

Figure 12 shows that the cluster tree have several

big supernodes. Specifically, every class (except “4”)

has a single big supernode and consequently it is

shown that patterns of the class form one huge cluster

in the original MST. Classes “4” and “7” have more

supernodes and thus many clusters in the MST. We can

say that those classes have several allographs and/or

big overlaps with another class. For example, class “7”

has typical two allographs, one of which is similar to

“1” and the other “9”.

Figure 12 also shows that class “1” is the main

“hub” of the cluster tree. In fact, the path between

any class pair (except for four class pairs, “2”-“7”,

“3”-“8”, “3”-“9”, and “8”- “9”), go through class

“1”. One reason is the fact that “1” has the most

fundamental shape among digits. Specifically, most

digits are vertically long and thus have similarity to

“1”.

Figure 13 shows the image sequence on the path

between two patterns “4” and “3”. The first 14 patterns

from the node of “4” are plotted. It is observed that,

as the dataset size increases, the neighboring patterns

on the path becomes more similar to each other. This

also represents how the pattern distribution becomes

dense.

Figure 14 shows the image sequence on the path

between two patterns from the same class “9”. It is

observed that, as the dataset size increases, the path

is improved by using more similar patterns, which

provides a better short-cut path. From another view-

point, class “9” is scattered into small clusters with

less patterns and then connected into a larger cluster

with more patterns.

VI. Conclusion

The distribution of massive (about 822 thousand)

handwritten digit patterns are analyzed by two method-

ologies, i.e., nearest neighbor analysis and network

analysis. Although they are simple, they are free from

any approximation in their representation and thus

useful to observe the details of the distribution. Many

observation have been conducted and the following

facts were revealed:
∙ By increasing dataset size 10 times, the error

rate decreases to 40%. This means that a further

increase of the dataset size will improve the

recognition accuracy, although its effect becomes

smaller. This coincides with a network analysis

result which shows that the percentage of patterns

neighboring two different classes also decreases

to 40%.

∙ By increasing dataset size, the NN patterns to

the input pattern become closer. This fact was

confirmed by observing not only the NN distance

but also the edge weight distribution of the MST

connecting all patterns.

∙ The existence of outliers, which were defined

as patterns surrounded by patterns of different

classes, was confirmed. It was difficult to change

these outliers into inliers even with all of the

822,714 patterns.

∙ Nearest neighbor patterns are useful for image

completion. In fact, even when 90% pixels are re-

moved, it is possible to complete 89% (=800/900)

of those pixels on average.

∙ The structure of MST connecting all 822 thou-

sand patterns was observed quantitatively and

qualitatively. An observation surely reveals that

most classes form their own huge cluster in their

distribution.
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