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Abstract 
 

The advent of pen-based interfaces has led to the 

development of many applications concerning the 

analysis of a drawn shape. But a drawing is not only a 

shape. It is also all the gestures which constitutes the 

drawing activity, as well as their planning. Pen-based 

interfaces give us the possibility to analyze this 
dimension of sketching. We call this kind of analysis: 

procedural analysis. In this article, we will show how 

to identify the privileged drawing procedures of users 

by identifying a constant pattern despite a huge 

within-drawer variability in drawing procedures. After 

stating how to extract this constant pattern, we shall 

show how we can use those results into a drawing-

based user identification method.  

 

 

1. Introduction 
 

 The advent of Pen-based Interface stood out as a 

logical continuity in the history of handdrawing. 

Indeed, it allows the automation or assistance by 

computer of a lot of processes, such as technical 

drawing for example. Consequently, numerous works 

apply to analyze shapes sketched by a drawer using 

Pen-based interfaces. Those kinds of approaches 

include for example shape and symbols recognition, 

sketch beautification, Computer Assisted Design... 

Though, analysis of a handdrawing activity can be 

operated from another point of view. We can try to 

analyze the sketching activity which led to the 

production of the shape rather than to analyze the 

produced shape. We call the analysis of this dimension 

of sketching: “procedural analysis”. Online acquisition 

of drawing activity by devices such as graphic tablets 

provides access to raw data about pen trajectory over 

time. Those data could allow automating those types 

of treatments. We focus here on freehand geometrical 

sketches. We shall begin by presenting a state of the 

art where we will show that even if procedural 

analysis of those kind a shapes finds a lot of 

applications, for example in order to assess 

psychological disorder, the attempts for automation 

are so far too few and the existing approaches lack of 

genericity.  

Then, we shall present a method of extraction and 

structural modeling of the procedure used to produce a 

shape. We will also propose a way to compute the 

dissimilarity between procedures. 

Afterward we will define some notions which seem 

important to us when dealing with procedure analysis. 

Indeed, one has to make a difference between what we 

have chosen to call “raw procedure” and “intrinsic 

procedure”. Most procedural analysis applications rely 

on the fact that each stroke of the sketch plays a role in 

the shape construction. Though we will see that most 

of the time, the raw observed procedure is noisy. 

Sometime this noise reveals information about user's 

drawing skills but it can as well prevent one to 

perform treatments relying on fine procedure analysis. 

In this article, we will present what is a raw and an 

intrinsic procedure and we will seek to find a way to 

discover the intrinsic procedure of any user when 

drawing a usual geometric shape. Using those results, 

we will show how we can determinate the favorite 

procedure of a user for the drawing of a shape. Finally, 

in order to test the efficiency of our methods, we will 

show an example of treatments that uses our results to 

perform a procedure based drawer recognition.  

 

2. State of the art 
 

The analysis of the drawing activity based on the 

observation of the strategy of realization of a shape is 

used since a long time in psychology for the 

assessment of neuropsychological disorders or 

learning disabilities, or to assess personality[1][6][10]. 

Unfortunately, those treatments are most of the time 

performed off-line by a human. Due to a lack of 
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methods allowing automatic extraction and modeling 

of the drawing activity, the human observer must take 

note during the observation of the sketching activity in 

order to have information about the execution process 

involved. However, it has been demonstrated that 

useful information for some diagnoses can be obtained 

by observing these dimensions of the sketching 

activity [6]. According to [2], works of this field can 

be divided in two categories: Those concerning the 

analysis of dynamic features and those concerning the 

analysis of procedural features. 

Dynamic analysis is about assessing overall and 

dynamic properties such as pressure on the pen, 

sketching speed, etc. Procedural analysis studies the 

way a drawer produces a drawing from the point of 

view of the temporal, geometrical and structural 

properties of the parts composing the sketch. In other 

words, procedure analysis is about the planning of the 

gesture while dynamic analysis is about motor control 

of the gesture. Despite the fact that the stakes of the 

procedural analysis are many, there is very little work 

in this field and existing methods present a lack of 

genericity. In the field of procedural analysis, Guest 

[2] uses a constructional sequence analysis in order to 

diagnose Visuo Spatial Neglect. For that he performs 

an analysis on sequences representing the order of 

appearance of the parts of the sketch. This method 

shows the interest and application of procedural 

analysis, though it presents some gaps: it is dedicated 

to a particular shape and relies on the assumption that 

the drawer will draw this exact shape. Also it is 

sensitive to noise and to inherent issues of free 

handrawing presented in [7]. Procedural analysis is 

also used by Sezgin [9] in order to improve a shape 

recognition process. He uses Hidden Markov Models 

to build an observation sequence describing ordering 

and orientations of strokes during the sketching. These 

observation sequences are then compared to models 

representing users’ favorite sketching style. This 

approach is efficient for the purpose of drawer-

dependent shape recognition. It could however not be 

used as a generic approach for procedural analysis as 

all aspect of procedures are not taken into account. 

Particularly, it does not take into account the sense 

according to which strokes are drawn. Furthermore, it 

does not handle events such as when the user lifts the 

pen or when he puts it on the sheet.  

 

3. Procedural description 
 

We are interested in the analysis of the procedure 

involved in a sketching activity, according to the 

definition of the procedure stated in [8], that is gesture 

planning. To operate our processing, we first perform 

a segmentation of the sketch. The segmentation 

method we use is presented in [7]. This segmentation 

step provides us raw data such as: the temporally 

ordered list of the geometrical primitives that 

approximate each part of the sketch, as well as the 

temporally ordered list of the feature points of the 

sketch. A feature point is either a break point (when 

the direction of the stroke changes) or a pen up/down 

point.  

Our procedural description will use two sequences. 

The first sequence, named O, represents the 

orientation and direction according to which each part 

of the sketch delimited by two feature points are 

sketched. The second sequence, named P, represents 

the type of each feature point: either break point or pen 

up/down.  

 

3.1 Extraction of sequence O 
 

For the construction of this sequence O, we will 

classify each part of the sketch according to their 

orientation: Vertical, Horizontal, Oblique Left or 

Oblique Right. But also according to the sense 

according to which they are done: Positive or 

Negative. For that we will observe the oriented angle 

between each part of the sketch and the X-axis as 

shown in figure 1, where arrows represent the sense of 

the part of the sketch. Then we divide the space into 8 

areas of 45°. If the angle is between -22.5° and +22.5°, 

it is labeled as a Positive Horizontal: H+. An angle 

between +157.5° and -157.5° indicates that the user as 

drawn horizontally from right to left, so the stroke will 

be labeled as H-., and so on. 

 

3.2 Extraction of sequence P 
 

We take into account for this article the types of 

feature points: Breakpoint and Pen Up/Down, 

available as input data from a segmentation step. 

Breakpoints are points where we can observe a 

discontinuity in curvature, while Pen Up/Down are 

points beginning and ending strokes (so when the user 

lifts the pen or when he puts it on the sheet). 

 

3.3 Dissimilarity Measure 
 

As our procedural descriptor is a set of sequences, we 

propose to use a string metric such as the Levenshtein 

distance [5]. This distance is defined as the minimum 

number of edits needed to transform one string into 

another one, with allowable edit operations like 

insertion, deletion, or substitution of a single character.  

The cost of insertion and deletion will be 2.  
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Figure 1 : Orientations 

Then we will define a specific and variable cost for 

substitution. The substitution cost of the sequence O 

will be calculated using a representation of this 

sequence based on the Freeman code. To each sense 

and orientation of strokes will correspond a value 

included between 0 and 7, as shown on figure 1. The 

cost of substitution then becomes the absolute value of 

the difference between the Freeman code of each 

component: Ds = || f1-f2|| 

Moreover, we have to take into account that every 

component has 2 distances to 0: one following the 

clockwise sense and one following the counter-

clockwise sense. For example, difference between H+ 

(0) and OL-(7) should be equal to 1. To overcome this 

limitation, the cost of a substitution involving a 0 will 

then be: Ds = min (||0-f2||,||8-f2||)  

Using this distance allow us to minimize the problem 

of this approach: the computation of the O sequences 

relies on the use of a threshold to determine the 

direction of a stroke. Unfortunately it can happen that 

a user draws a clearly oblique segment when trying to 

draw it horizontally. This induces a bad recognition of 

the procedure. Using a dissimilarity based on the 

Freeman code only for substitution allow us to state 

that : 

 “If two O sequences, for the same shape, have an edit 

distance of 1 then the two procedures are exactly the 

same, as a difference of 1 can only be obtained by the 

misclassification of one of the stroke composing the 

shape”.  

So, two procedures will be considered as equals if they 

have a distance of 0 or 1. If a user poorly has drawn 

one of the strokes composing the sketch, this won’t 

have any bad repercussion.  

 

4. Procedural Consistency 
 

The genesis of the graphical skills [3] consists in 

several stages: 1, scrawl and birth of the first shapes, 

2, the awareness of the shape and 3, mastery of 

drawing the shape. 

In this final stage, by repetition, sketching becomes an 

automated gesture which reflects a certain level of 

"expertise" in the drawing of a shape. So it seems 

logical to think that the gestures involved in the 

drawing of a shape, for which the production is an 

automatism, will always be the same. This offers two 

possibilities: 

• If a drawer controls the drawing of a shape, 

his procedure, because it is automated, it 

must be immutable. The procedure of this 

drawer will then be described as 

"consistent".  

• If it is not possible to identify a preferred 

procedure in the drawing of a shape by a 

drawer, it informs us that this drawer does 

not master the production of this shape. 

From these assumptions, we developed the definition 

of a feature which we call « procedural consistency ». 

A user's procedural consistency for a shape is equal to 

the highest utilization rate observed for the procedures 

that he uses when drawing this form. A user who 

always uses the same procedure for the drawing of a 

shape will have a procedural consistency index equal 

to the maximum observable utilization rate, so 100%. 

We shall then say that this user has a strong 

consistency for the drawing of this shape. On the 

contrary, if a user uses several different procedures to 

draw the same shape, his consistency will be qualified 

as weak. 

 

5. Raw procedure / intrinsic procedure: 

discovering a favored procedure 
 

One of the objectives of this paper is to show the 

efficiency of our approach of procedural analysis by 

applying it to the drawer recognition. Of course, the 

identification of a user by analyzing the way he draws 

a shape will be possible only if we are able to identify 

his favored procedure for drawing a shape and if this 

preferred procedure is strongly consistent. 

In order to validate our first intuition that when 

sketching an usual form, an experienced drawer will 

most of the time use the same procedure (ie: he will 

have a high consistency rate), we performed some 

tests using the Hhreco Dataset [4] in which each of the 

19 experimented users were asked to draw at least 30 

examples for each shape. We extracted the procedural 

description and then we calculated their procedural 

consistencies for the drawing of three shapes: square, 

parallelogram and pentagon. 
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5.1. Consistency of raw procedures 
 

The procedural consistencies obtained on raw 

procedural descriptions appeared to be weak (table I). 

Even if some users may have an acceptable procedural 

consistency (for example one user has a consistency of 

86% for the parallelogram), the average value of 

60.37% for the square, for example, means that 

generally, when drawing 30 squares, users will use 

their preferred procedure only on 18 of them. 

However, with a more detailed analysis of those 

results we found out that the within-drawer variability 

observed on raw procedures involved to draw an usual 

shape was usually induced only by significantly 

smaller strokes than the others of the shape. So, from a 

strictly axiomatic standpoint, they do not participate in 

the construction of the shape.  

 

Table 1 : Consistencies on raw procedures 

 Square Parallelogram Pentagon 

Max 83.33% 86% 60% 

Min 23.33% 32% 3.33% 

Average 60.37% 58.91% 32.09% 

 

Indeed, as shown in [11], when drawing a stroke, 

drawers tend to miscontrol their movement when they 

start a stroke or when they try to reach an end point, so 

they generate artifacts in the sketch at ends or 

beginnings of strokes. To illustrate this phenomenon, 

let us take a look at the case of the production of the 

three squares presented in figure 2. Indeed, the raw 

procedure varies each time: as we can see, stroke 

number 5 is present in square (b) but not present in 

square (a) or in square (c). Also, stroke number 1, 

which is the first stroke for square (a) and (b), is not 

present in square (c). 

 

Table 2 : Results of procedural noise filtering 

  Square Parallelogram Pentagon 

Nbr of 

sketches 
602 603 607 

Correctly 

filtered 
97.34% 96.52% 99.18% 

Over-

filtration 
1.99% 3.3% 0.32% 

Under-

filtration 
0.67% 0.16% 0.49% 

 

So finally, we get three different sequences. 

Nevertheless, these different sequences only differ on 

small and inconstant strokes. Moreover they do not 

participate in the definition of the shape (ie: they are 

not needed for the shape construction) but rather 

seems to be what we have chosen to call « procedural 

noise ». In truth, in these three sketches, if we filter the 

procedural noise, the four parts constituting the square 

and participating in its definition from a geometrical 

point of view are clearly identifiable and their order of 

appearance follows a constant pattern. Consequently, 

if we disregard the procedural noise, the three 

procedures are strictly the same.  

 

5.2 Procedural noise filtering 
 

In a sketch, all the small artifacts composing the 

procedural noise share only one characteristic: they are 

significantly small. Therefore, we propose to filter the 

procedural noise by eliminating strokes whose length 

is less than a threshold. Of course we cannot just fix an 

empirical threshold as it should vary depending on 

shapes class. An average-based filtering also seems 

 

Figure 2: 3 squares drawn by the same user 
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irrelevant. Indeed, the ratio: average length of strokes 

over length of relevant strokes would also vary 

depending of the class of the shapes, not to mention 

that segmentation issues may also impact it. The 

number of points composing the strokes cannot be 

used either since this data depends on both acquisition 

method and user’s drawing speed. In order to have an 

adaptive threshold to decide whether or not a stroke is 

“small”, we take into account the relative length of 

strokes with regards to the length of the longest stroke 

of the sketch. Every stroke whose length is under 35% 

of the length of the longest stroke will be considered 

as noise and thus will be filtered. Results of this 

filtering are presented in table II.  The “correctly 

filtered” row is the rate of shapes for which all and 

only the procedural noise has been eliminated. The 

over filtration rate represents the percentage of shapes 

for which, in addition to the noise, we have also erase 

strokes that should have been kept. Finally, under 

filtration rate is the percentage of sketches for which 

some procedural noise remains. 

 

Table 3 : Consistencies with procedural noise filtering 

Shape Square Parallelogram Pentagon 

Average 98.8% 97.29% 94.70% 

Gain +63%  +65%  +195%  

 

5.3. Consistency of Intrinsic procedures  
 

We extract procedures again for all users of the dataset 

using the procedural noise filtering described above. 

We call “intrinsic procedure” the procedure obtained 

after filtering of a raw procedure. The consistencies 

we obtain are shown in table 3. Consistency rates 

proved to be much more interesting than those 

obtained by raw procedure analysis. However, they 

can sometime be unsatisfactory: 9 of the 57 scores are 

under 90%. Non-maximal consistencies (when 

drawing is an automatism) can be due to Over-

filtration, Under-filtration or it can result from 

Segmentation issues. But most of the time it is due to 

the fact that users are sometimes going slightly 

diagonally when trying to draw horizontally for 

example. This fact is related to user’s imprecision. 

 

6. Drawer Identification 
 

As we have seen, once reached a certain degree of 

control, the drawer acquires an automation of the 

gesture. Moreover, the procedural noise filtering that 

we have developed provides a good consistency of 

intrinsic procedures. Given that, we should now show 

how we can recognize a drawer by studying the 

sequences O and P of his intrinsic procedure. In our 

process, we take into account the finite number of 

possible procedures for the drawing of a shape. Thus, 

several users can share the same procedure for the 

drawing of a shape. The more the number of users is 

big and the more the complexity of a figure is low, the 

bigger will be the chances of confusion. This 

limitation is first lessened by the combined use of O 

and P sequences. Indeed, different drawers can share 

the same order of appearance of the various strokes 

composing the shape. However they are susceptible to 

handle the pen differently. For example, in our 

database, we have observed that users 4 and 15 share 

exactly the same O sequence when drawing a square, 

however, while user 4 never lift the pen, user 15 

always lift it after the first stroke and before the last 

one. This limitation can also be lessened by increasing 

the number of figures involved in the recognition 

process. Indeed, if the chances are great that two users 

use the same procedure for drawing a shape, there is 

less chance that they share the same procedure for the 

drawing of several shapes. In other words, the greater 

the number of shapes involved in the recognition is, 

the more we reduce the chances to find multiple users 

sharing the same procedures. However, the less we use 

shapes, the more practical the system will be. Also, we 

have to keep it mind that shapes must be sufficiently 

common. Indeed, if a Great Stellated Dodecahedron is 

complex enough to expect that we won’t find 2 users 

sharing the same procedure; its high complexity will 

prevent us to find any user for which the drawing of 

this shape is an automatism. To compromise, we 

decided to test our method with 3 classes of shape: 

square, parallelogram and pentagon. We have tested 

this approach on the HHreco dataset [4]. At first, we 

have separated the data to create a test set and a 

training set. For each shape and each user, we have 

randomly selected 4 sketches for the training set, all 

the remaining sketches belongs to the test set. We 

extract intrinsic procedures involved by users on those 

4 shapes. For each user, the procedure presenting the 

highest consistency rate is learned as their favorite 

procedure. Using the test set, we have then generated 

all possible combinations of a Square-Parallelogram-

Pentagon sequence for each user, so at least 17,576 

situations by user. We will try to recognize users using 

the following process:  

We extract the procedure used by the drawer to 

produce a square and we compare it, using our 

dissimilarity measure, to all the procedures we have 

learned on the training set. If the one with the smallest 

distance belongs to the good user, then we count a 

good recognition. If several procedures are tie, we 

repeat the process with the parallelogram and we 
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compare it to the learned procedures belonging to 

users that were tie. If several procedures are tie again, 

we repeat the process with the pentagon. Results for 

this step are presented in table 4. 

Table 4 : recognition rates 

User Recognition Rate User Recognition rate 

1 100% 8 to 14 100% 

2 96.15% 15 95.56% 

3 to 6 100% 16 to 18 100% 

7 69%  19 80.77% 

Average : 96.92% 

 

7. Discussion 
 

As we can see, the recognition rates are pretty good. 

Even for users with a low consistency. For example 

User2’s consistencies are only 63.33% for the square 

and 70.97% for the pentagon, but his recognition rate 

is 100%. This is due to the fact that a low consistency 

rate does not reflect only the use of several 

construction strategies. It is also an indicator of the 

precision of a drawer’s sketching gestures and an 

indicator of the consistency of this precision. Our 

approach for the modeling of the procedure and our 

dissimilarity measure allow the method to be strong 

against the drawer’s lack of precision. The method is 

also robust, to some extent, against filtering or 

segmentation issues. Those issues share a common 

point: they both can lead to an incomplete or to an 

overloaded description.  Thanks to our dissimilarity 

measure, in most case, an incomplete or overloaded 

procedure is still closer to its correct form than it is to 

any other learned one. For instance, user 8 produced 

shapes presenting a lot of noise and defects. Thus, 

about 27% of the procedures extracted from his 

parallelograms production are incomplete (or 

overloaded). However, our system can still recognize 

him with 100% accuracy.   

 

8. Conclusion 
 

After presenting a method of extraction and modeling 

of the procedure used by a drawer for the construction 

of a geometrical shape, we proposed a feature for the 

evaluation of its degree of acquisition of the graphical 

skills leading to this realization: the procedural 

consistency.  We have shown how to differentiate two 

types of procedure: raw and intrinsic procedure. By 

implementing a method for the filtering of the raw 

procedure, we were able to determine that the intrinsic 

procedure we obtain can be considered as a favored 

procedure, for the construction of a shape, when its 

consistency is high. Finally, to show the efficiency of 

the notions and methods that we presented, we showed 

that it was possible to use our procedural analysis 

approach in order to recognize a user by the 

observation of his sketching activity with an accuracy 

of 97%. For future works, we will have to extend our 

tests to more drawers and to confront our methods to 

other types of shapes. 
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