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Abstract 

 

We present a study for modeling handwriting styles 

that derives from handwriting generation studies, 

according to which handwriting is a temporal 

sequence of elementary movements. Hence, 

handwriting style results from the way those 

movements are actually performed and sequentially 

executed to reach fluency. We conjecture that 

handwriting styles depend on two main factors: the 

shape of the traces corresponding to the 

elementary movements and the way these traces 

are connected. To prove this conjecture, and the 

handwriting style model we have derived from it, 

we have designed an experiment in which 

handwriting samples are described by only two 

parameters and then clustered. The experimental 

results show that, despite its simplicity, the 

proposed method is able to capture the distinctive 

aspects of handwriting styles behind the 

handwriting samples, even when the writers 

deliberately attempts to modify it, and therefore 

corroborate our conjecture.  

 

1. Introduction 
 

Studies on motor control have shown that 

handwriting is a learned, complex motoric task, 

composed of elementary movements, or strokes, 

arranged in a temporal sequence. Fluency, then, 

emerges when these movements are executed in 

such a way to minimize the writer’s energy 

consumption [1, 2]. At beginning of handwriting 

learning, each stroke aimed at reaching the target 

point that has been visually selected is executed 

independently from the previous or the following 

one. Such a stop-and-go writing modality is slow, 

because after reaching a target point the next one 

needs to be selected and the appropriate motor 

commands planned, and expensive, because of both 

the cognitive load for planning and the need to 

overcome the inertia for executing each stroke. By 

repeated practice, the sequence of target points 

becomes familiar to the writer, as well as the 

sequence of motor commands needed to execute 
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them, so that the next movement can start before 

the current one terminates. This anticipation allows 

for a faster and cheaper writing, because of the 

elimination of both the pauses between successive 

strokes and the corresponding inertias. When the 

learning completes, fluency is achieved, in that the 

whole sequence of motor commands has been 

learned and stores in such a way that it is resorted 

from memory and the corresponding movements 

executed automatically with proper timing and 

without any visual and proprioceptive feedback, as 

it were an elementary movement [3, 4]. 

According to those findings, what we call 

handwriting style results from the sequence of 

target points, the movements to reach them and the 

timing for their execution. We conjecture that all 

those aspects are embedded into the ink trace and 

can be estimated by looking at the actual shape of 

the ink. To prove this conjecture, we propose a 

model for handwriting styles that envisages only 

two parameters. To validate the model, we 

designed an experiment in which a standard K-

means clustering algorithm is used in the model 

parameter space for recognizing handwriting style 

across a set of samples.  

The remaining of the paper is organized as it 

follows. In Section 2 we describe the rationale 

behind our conjecture and derive the model for 

characterizing handwriting styles. In Section 3 we 

present the method we have designed for 

estimating the model parameter. In Section 4, we 

present the experimental validation of the model 

and discuss results. Eventually, we draw some 

preliminary conclusions and outline the future 

work. 

 

2. A model of handwriting style 
 

To illustrate the rationale behind our conjecture, let 

us consider a very simple task: to reproduce the 

shape of in fig. 1a. At the beginning of the learning, 

the writer will visually select the target points Av 

and Mv, and then will draw a stroke for connecting 

them. Once the point Mv has been reached, the 

writer will select the target point Bv and draw the 

second stroke, as depicted in fig. 1b. The repeated 

practice of  the  task leads  the writer  to know  that,  
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Fig.1. Handwriting style formation. a) A simple shape to be 

reproduced. and the estimated sequence of visual targets: Av, Mv 

and Bv. b) The effect of time superimposition between the stroke 

going from Av, to Mv and the following ones, connecting Mv to 

Bv. As the amount of time superimposition increases the point 

V1 (V2) get closer to Av (Bv) and so the part of the strokes that is 

not affected by the drawing of the successive (previous) one 

decreases. As a consequence, the target Mv will not be reached, 

and the segmentation points between the first and the second 

strokes, Mv1 or Mv2 in the figure, will be located along the arc 

V1V2, in correspondence of the curvature maximum. Eventually,

the angle g becomes larger as the time superimposition between 

the two strokes increases, thus providing an estimate of the time 

superimposition amount used by the writer to produce a 

sequence of strokes for reproducing the given shape. 

 

after reaching point Mv he has to reach Bv, i.e. to 

learn the complete trajectory of the intended 

movement. The learned spatial sequence is then 

converted into motor commands. At this point, the 

sequence of targets having been learned, the 

movement can be executed without visual 

feedback, with a precision in estimating the relative 

position of Av, Mv and Bv as well as in reaching the 

targets that depend on the fine motor skill of the 

writer, thus accounting for the actual shape 

variations observed when the task is performed by 

different subjects, and that will improve as the 

learning proceeds.  

Simultaneously, to avoid stopping when 

reaching Mv, the writer will anticipate the starting 

of the second stroke. This anticipation will allow 

for a less expensive and faster movement, but will 

determine a change in the shape of the trace, 

because the command to draw the second stroke is 

issued when the hand is still involved in executing 

the first one. As the second command is issued, the 

pen-tip is subject to two competing accelerations: a 

negative one, because the first movement, still in 

place, is reaching the target and should stop, and a 

positive one, since the second command requires to 

move the pen-tip from the current position towards 

the target. As a matter of fact, Mv will be displaced 

in correspondence of the curvature maximum along 

the ink between V1 and V2. As the time 

superimposition between the two commands 

increases, the portion of the first stroke that will be 

drawn without interference from the following one 

decreases. Consequently, the actual positions of V1 

and V2 change, as in fig. 1.b, and so will the 

curvature along the ink trace between them and, 

consequently, the position of Mv. Eventually, when 

the time superimposition becomes greater than a 

given amount, the two strokes will merge into a 

single one, as it can be observed in fast writing, 

when the time constraints force the writer to 

eliminate some of the stroke in quest for speed. 

The actual shape of the trace, then, is the result 

of such a complex interaction, which involves 

motor planning (which accounts for the relative 

position of the targets and the amount of 

anticipation) and motor execution (which accounts 

for the variations of the actual shape of the trace in 

different executions depending on the actual 

conditions of the effector system when the 

execution starts). The intertwining between the two 

explains why the ink traces produced by the same 

writer at different times to execute a learned 

sequence of movements may vary considerably [5]. 

Thus, modeling handwriting requires to describe 

the shape of the strokes and the amount of time 

superimposition between following ones. 

As with regards to the description of the shape 

of the stroke, among the many models proposed in 

the literature [6-10], in this study we have adopted 

the one that assumes that the best curve for 

describing the shape of a single stroke is an ellipse 

[10]. We have chosen such a model because of both 

its simplicity and effectiveness in providing robust 

descriptions. Given a stroke, then, its description is 

provided by estimating the three parameters of the 

ellipse that best fit the stroke: the half-length of 

both the major and the minor axis, and the angle θ 

between the major axis of the ellipse and the 

baseline. Of the three of them, the first two are 

rotation invariant and size dependent. This means 

that they will not help to discriminate among 

rotated strokes, that we wish because the slant is a 

relevant characteristics of the handwriting style, 

while introducing size-dependent variation, that we 

won’t wish because the relative position of the 

target points already encodes such information. 

Thus, we include in the model only θ. 
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In order to estimate the amount of time 

superimposition between a pair of successive 

stroke, fig. 1 shows that as the amount of time 

superimposition increases, the angle γ between the 

segment AvMv1 and the segment Mv1Bv increases 

too, and therefore can provide an estimate of such a 

dynamic feature of handwriting. 

Summarizing, an handwritten trace composed 

of N strokes will be associated with the following 

sequences: 

 

Θ=(θ1, θ2, …, θn); 

Γ=(γ1, γ2, …, γn-1). 

 

The final model M is achieved by averaging the 

values of each sequence: M = (Θ!"#, Γ!"#).  

In the following section we will describe a method 

we have implemented for measuring these 

parameters from a scanned image of the trace. 

 

3. Measuring handwriting style 
 

To measure the model parameters we need to 

preliminary extract from the trace the sequence of 

strokes, i.e. to recover the writing order and to 

locate the segmentation points between successive 

strokes. 

 

3.1. Writing order recovery 

 
The methods proposed in the literature can be 

divided in two broad categories: local line tracing 

and global graph search [11]. Local line tracing 

methods are generally simpler and require a low 

computational cost, even if they exhibit some 

limitations because it is difficult to find robust 

heuristic criteria for selecting the optimal direction 

that can be applied to various handwriting styles. 

On the other hand, global graph search methods 

overcome some of the limitations of local tracing 

ones, but generally require a very huge 

computational cost and the definition of effective 

criteria for selecting, among equivalent paths, those 

allowing a better reconstruction of the original 

script.  

In this study we use a hybrid approach we have 

developed in previous work [12]. Basically, it uses 

local criteria to formulate hypothesis on traversing 

each intersection, and global search for the final 

selection. It also incorporates criteria for finding 

the beginning and the end of each fragment and to 

deal with movements including pen-lifts but still 

resulting in a single connected component, as it 

may happen when a the letter “$” is produced by 

drawing the loop, then lifting the pen to reach the 

top of the ascender, and then drawing the ascender 

in such a way it touches or even intersects the loop. 

The resulting implementation is based on the 

Fleury’s algorithm for graph traversal, incorporates 

rules derived from handwriting generation 

modeling for both selecting the beginning and the 

end of each fragment and to deal with the pen-up 

possibly present, and eventually resorts to good 

continuity criteria when alternative solutions at 

intersections are still possible after the previous 

processing. At the end of this step, thus, the ink of 

each fragment has been unfolded according to the 

reconstructed writing order. 

 

2.2. Stroke segmentation 
 

The strokes are generally hidden in the ink due to 

both noise and anticipatory effects. The noise 

originates from several sources, from the digitizer 

to erratic hand or finger movements. The 

anticipatory effect originates from time-

superimposition of strokes that allows starting a 

new stroke before the end of the previous one, 

leading to the fluency of the handwriting 

movements and the smoothness of the ink. Those 

are the reasons why the segmentation of 

handwriting into strokes is believed to be among 

the most challenging step for cursive script analysis 

and recognition. In this study, we adopt the 

algorithm we have developed in a previous work by 

exploiting the concept of saliency introduced for 

modeling visual attention shift [13]. Following this 

approach, the electronic ink represents the scene 

the system is looking at, and its curvature 

represents the feature whose saliency is estimated. 

Thus, segmentation points correspond to the 

highest values of the saliency map. The obtained 

segmentation is much more invariant with respect 

to locally prominent but globally non-significant 

changes of curvature and compares favourably 

even with those exploiting changes in the writing 

speed as they are available in the on-line case.  

 

3.2. Model parameter estimation 
 

Given the sequence of strokes provided by the 

previous steps, we proceed by fitting each stroke 

with ellipses by the least square linear regression, 

thus obtaining the values of θi, i= 1..n, and 

eventually by computing the value of γj, j= 1..n-1, 

for each pair of successive stroke. Then, we 

compute the average values for each of them across 

all the strokes of the sequence. By this processing, 

each sequence s is eventually associated with its 

model, represented by the pair  (Θ
s
!"#, Γ

s
!"#).   

 

4. Experimental validation 
 

To validate the model we have designed an 

experiment in which traces produced by an 

unknown number of writers are clustered together 

411



according to the values of the pair (Θ
s
!"#, Γ

s
!"#)  

associated to each of them. We would expect that 

traces produced by the same writer would be 

clustered together, so that each cluster corresponds 

to a writer. 

The data set used in the experiment was not 

collected by us, but made available within a larger 

project on writer identification by Forensic 

Document Examination. For this reason, some of 

the subjects were requested to produce a disguised 

handwriting, i.e. a handwriting in which they 

consciously modify it with respect to the genuine 

one. None of the subject was a skilled forger, but 

they were allowed to practice for 15 minutes before 

producing the disguised document. The complete 

data set is composed of the digital images scanned 

at 300 dpi of 32 documents produced by 18 

subjects. It contains 3 documents (1 genuine, 2 

disguised) written by a single writer, 12 pairs of 

documents (1 genuine 1 disguised), each produced 

by a different writer, and 5 documents (either 

genuine or disguised), each produced by 5 different 

writers. Each form contains the same text 

composed of 92 words, a summary of a children 

tale well-known to the writers. Samples of the 

handwritten text extracted from the documents we 

have used in the experiments are shown in fig. 2, 

while Table 1 reports the authors of each 

document.  

Let us recall that handwriting style refers to the 

execution of a sequence of strokes that have been 

previously learned by the writers, so that they are 

produce automatically and thus fluently when 

writing a given word. Apparently, then, we should 

compare the traces associated to the same word. 

But, after the learning, every writer has developed 

his own way of writing the word, which may also 

include pen-down’s and pen-up’s movements. So, 

the same word can be written with different 

sequences of pen-down’ and pen-up’s. On the other 

hand, our conjecture is that handwriting style can 

be evaluated by looking at the shape of the traces. 

It follows that movements executed without leaving 

a trace on the paper, as it happens during pen-up’s, 

are beyond the limits of our analysis. Thus, we 

consider only the fragments of the words 

containing traces drawn without lifting the pen and 

corresponding to the same sequence of characters. 

Those fragments need to be manually extracted 

from the words in order to avoid the errors 

introduced by both the writing order recovery and 

the stroke segmentation step, so in the experiments 

reported below we have extracted 1,503 fragments 

from 6 different documents, corresponding to 23 

different sequences of character. Among them, the 

shortest sequence contains 2 characters, the longest 

7. Eventually, each fragment was processed as 

before to compute the pair (Θ
s
!"#, Γ

s
!"#).  

 

 

 

 

 

 

 
 

Fig. 2: Samples of handwriting extracted from the documents 

used in the experiments. The handwriting show belong to the 

documents 288, 32, 219, 707, 869 and 809, respectively. 

 

For clustering the styles, we have used the k-

means algorithm, with k equal to the number of 

document from which the fragments were 

extracted, because the number of writers is 

unknown. As similarity measure, we adopt the 

Euclidean distance between the samples. Both the 

algorithm and the similarity measure are standard 

practice in statistics. Figures 3-5 shows a few plots 

of the fragments in the model space. In the plots, 

each dot corresponds to a point, and its shape 

denotes the document to which it belongs. The 

centroids of the cluster are also shown. For the sake 

of clarity, in each plot we have reported only 

fragments extracted from 3 to 5 documents among 

the 6 we have processed.  

After this processing, in the ideal case all the 

fragments extracted from the same document will 

be included into the same cluster. In practice, they 

may spread in many clusters, because it is possible 

that traces produced by different writers to encode 

some of the sequence of characters may have a 

very similar shape. To deal with that, we used a 

very simple criterion: to assign the document to the 

cluster that contains most of its fragments. Thus, 

we expect the algorithm to assign the document 

produced by different writers to different clusters, 

thus providing empty clusters when there are two, 

or more documents written by the same writer. 

The results reported in the Tables II, III and IV, 

refers to the same fragments plotted in fig. 3, 4 and 

5, respectively. Each entry represents the 

percentage of the fragments extracted from the 

document that are assigned to each cluster. The 

bold and italicised entries are those who determine 

the assignment of the i-th documents to the j-th 

cluster. The data reported in the tables compared 

with the ground truth reported in Table I show that 

documents produced by the same writer are always 

grouped in the same cluster, and when the number 
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of writers w is smaller than k, i.e. there are some 

writers that produced two or more documents, there 

are k-w clusters containing few fragments of many 

writers, but not enough to have any document 

assigned to them. 

 

5. Discussion and Conclusion 
 

The data reported in the tables show that, despite its 

simplicity, the proposed model seems able to 

capture the distinctive aspects of handwriting 

styles. The reported performance was achieved by 

using the proposed model to describe handwritten 

samples and then by adopting a powerful but 

standard pattern recognition technique, namely the 

k-means algorithm with Euclidean distance as 

similarity measure, to highlight similarities (and 

dissimilarities) among them. The obtained clusters 

contained all and only the documents produced by 

the same writer. 

It may be argued that such a conclusion has 

been drawn on a very limited data set, and therefore 

cannot be considered as reliable as one would like. 

While this is certainly true, we would like to 

highlight some aspects that may support our claim 

that the quality of the results does not depend on 

the data.  

The documents used in this experiments were 

provided to 25 experienced FDEs participating to 

the project that leads to the collection of the whole 

data set, and only one of them was able to correctly 

identify the writer of each of them, confirming that 

the task we have addressed is very challenging for 

skilled human experts too. On the same set of 

documents, a much more complex system we have 

developed in a previous work [14], which adopts 

the CEDAR-FOX software to characterized the 

handwriting and the Borda count to produce the 

final output, was able to correctly identifying the 

authors of the pairs considered in both experiments, 

but not the writer who produced 3 documents. 

All together, those observations seem to suggest 

that the paramount factor in determining the 

reported performance is the model of handwriting 

we have designed. Such a model is based on 

observations drawn from motor control and 

neuroscience studies about the way handwriting is 

learned and executed. It represents an attempt to 

model handwriting not by modeling the traces, as it 

is customary when a pure pattern recognition 

approach is followed, but rather by modeling the 

process that generates the traces. This further level 

of abstraction seems to be able to explain much of 

the variability encountered in handwriting in a 

much simpler way than it is required when the 

traces are directly considered. Such a reduction of 

complexity may explain the performance of a very 

simple model as the one we have developed. 

In the future we will extend the experiment to 

the whole set of documents as well as to documents 

from publicly available data sets.  
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Fig 3. The plot shows the fragments extracted from 3 documents 

produced by 2 writers.  

 

 

 

 
 
Fig. 4. The plot shows the fragments extracted from 5 

documents produced by 3 writers. 

 

 
 

Fig. 5. The plot shows the fragments extracted from 4 

documents produced by 2 writers.  

TABLE I. THE AUTHORSHIP OF THE DOCUMENT 

 

 Writer 1 Writer 2 Writer 3 

Doc_id 32, 288, 809 707, 869 219 

 

 

 

 

TABLE II. CLUSTERING OF THE FRAGMENTS SHOWN IN FIG. 3 

AND THE FINAL CLUSTERING OF THE DOCUMENTS. 

 

Doc_id Cl_1 Cl_ 2 Cl_3 

288 10.61 12.12 77.27 

32 21.68 16.87 61.45 

219 58.90 16.44 24.66 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE III. CLUSTERING OF THE FRAGMENTS SHOWN IN FIG. 4 

AND THE FINAL CLUSTERING OF THE DOCUMENTS. 

 

Doc_id  Cl_1 Cl_ 2 Cl_3 Cl_4 Cl_5 

288 10.95 11.68 40.15 21.89 15.33 

32 18.45 9.52 30.36 17.26 24.41 

219 13.25 8.43 7.83 36.75 33.74 

707 7.66 13.51 6.31 31.53 40.99 

869 21.96 12.33 14.12 19.22 31.37 

 

 

 

 

 

 

 
 

TABLE IV. CLUSTERING OF THE FRAGMENTS SHOWN IN FIG. 5 

AND THE FINAL CLUSTERING OF THE DOCUMENTS. 

 

Doc_id Cl_1 Cl_ 2 Cl_3 Cl_4 

288 15,84 13,86 4,95 65,35 

32 12,74 9,80 24,50 52,94 

809 8,91 17,82 6,93 66,34 

219 16,43 8,21 52,06 23,29 
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