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Abstract

In this paper we present a novel writer-

independent off-line signature verification system.

This system utilises the discrete Radon transform

and a dynamic time warping algorithm for writer-

independent signature representation in dissimilar-

ity space. The system also considers writer-specific

statistics for dissimilarity normalisation. A dis-

criminant function, either linear or quadratic, is

utilised for signature modelling and verification.

We show that the feature extraction and dissim-

ilarity representation framework proposed in this

paper provides a successful platform for signature

modelling and verification. We also show that the

inclusion of writer-specific statistics during dissimi-

larity normalisation improves the proficiency of the

proposed writer-independent verification system.

When evaluated on Dolfing’s data set, a signa-

ture database containing 1530 genuine signatures

and 3000 amateur skilled forgeries, we show that

the system presented in this paper outperforms ex-

isting systems also evaluated on this data set.

1 Introduction

In the traditional writer-dependent approach to
off-line signature verification, each writer submits a
set of genuine signature samples, in order to train
a model specific to said writer. This popular ap-
proach, however, has two notable disadvantages:
(1) A relatively large training set, not realistically
obtainable in practice, is required to produce a
sufficiently representative writer model; (2) When
utilising a discriminative model for classification,
only random forgeries may be used for model train-
ing, since it is not reasonable to assume the avail-
ability of skilled forgeries for every writer enrolled
during deployment.

In contrast, the writer-independent approach
constructs a signature model that discriminates be-
tween two classes only, namely genuine and forged
signatures (also referred to as positive and nega-
tive instances) belonging to any writer. This is
achieved by utilising a dissimilarity representation,
obtained by comparing writer-specific positive and
negative training samples to a writer-specific set of
positive reference samples, for model training. Dur-
ing system deployment, any newly enrolled writer
only needs to submit a positive reference set, in
order to obtain a dissimilarity representation suit-
able for consideration by the trained model. The
writer-independent approach therefore provides ef-
fective solutions to the problems of data scarcity
and training with skilled forgeries.

As a result, the use of writer-independent veri-
fication frameworks has gained notable popularity
in the literature [9, 1, 2]. In this paper, we propose
a novel writer-independent verification framework
for skilled forgery detection.

2 System overview

The system presented in this paper is trained
and evaluated using signatures from different writ-
ers. Every writer considered provides a collection of
labelled positive samples that constitutes a writer-
specific reference set. The training set is composed
of labelled positive and negative samples from a col-
lection of guinea-pig writers (e.g. banking staff or a
control group). The evaluation set comprises unla-
belled positive and negative samples from a collec-
tion of writers different than those in the guinea-pig
set (e.g. banking clients). System performance is
gauged using the equal error rate (EER).

During signature modelling, the required dissim-
ilarity representation is achieved by employing a
two-stage process. Binary signature images are first
converted into feature sets using the discrete Radon
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transform (DRT) [4]. Using a dynamic time warp-

ing (DTW) algorithm [3], the above-mentioned fea-
ture sets are subsequently matched to those ex-
tracted from writer-specific reference signatures, so
that a set of dissimilarity vectors is obtained.

The set of dissimilarity vectors obtained from
signatures in the training set is used to train a
discriminant function (DF) [6]. A linear discrim-

inant function (LDF) and quadratic discriminant

function (QDF) are considered. During evaluation,
questioned signatures from the evaluation set are
encoded into dissimilarity vectors, by comparing
said signatures to the appropriate writer-specific
reference signatures. The trained DF is subse-
quently used to predict class membership.

3 Signature representation

Feature extraction. The use of projection pro-
files for feature extraction is popular, since it effec-
tively captures signature shape information. Many
systems in the literature, however, rely solely on
horizontal and vertical projection profiles.

The system presented in this paper utilises the
discrete Radon transform, since it enables the use
of an expanded projection angle set and therefore
constitutes a natural progression of the projection-
based method. The DRT has been shown to be well
suited for signature representation [4].

Any binary signature image I presented to the
system proposed in this paper is converted into a
set of T , d-dimensional feature vectors. This is
achieved by calculating a projection profile for each
angle �i in the set Θ = {�1, �2, . . . , �T }. This set
contains T equally distributed angles in the range
[0∘, 180∘)1. Each of the T feature vectors obtained
by employing the DRT is then interpolated to have
a length of d and normalised to have unit variance.
This process produces a scale invariant feature set
X = {x1,x2, . . . ,xT }.

Dissimilarity representation. The DRT-based
feature extraction technique described above pro-
duces a collection of feature sets for each writer en-
rolled into the system. In a writer-dependent ver-
ification scenario, these feature sets may be used
to train a writer-specific signature model. In order
to construct a writer-independent system, however,
each writer-dependent collection of feature sets is
converted into a set of dissimilarity vectors.

1Initially, T + 1 equally distributed angles in the range
[0∘, 180∘] are obtained. The angle 180∘ is then discarded,
since its projection is equivalent to that of 0∘.

Given a feature set X
(!)
k , extracted from a posi-

tive reference signature belonging to writer !, any

other feature set X
(!)
q that is claimed to belong

to this writer can be converted into a dissimilar-
ity vector �

(!)
(q,k) by calculating the dissimilarity be-

tween X
(!)
k and X

(!)
q . It is proposed in [9] that

the dissimilarity between two d-dimensional feature
vectors xk and xq is obtained using the Euclidean
distance, such that

�
(!)
(q,k) =

d
∪

i=1

√

(x
(k)
i − x

(q)
i )2, (1)

where
∪

denotes vector concatenation, whilst x
(k)
i

and x
(q)
i denote the ith pair of elements belonging

to feature vectors xk and xq, respectively.

In contrast, the system presented in this paper
obtains the dissimilarity between two feature sets

Xk and Xq by using a DTW-algorithm, such that

�
(!)
(q,k) =

T
∪

i=1

D(x
(k)
i ,x

(q)
i ), (2)

where D(x
(k)
i ,x

(q)
i ) denotes the DTW-based dis-

tance between the ith pair of d-dimensional fea-

ture vectors x
(k)
i ∈ Xk and x

(q)
i ∈ Xq. This

process is therefore able to convert any set of
T , d-dimensional feature vectors into a single T -
dimensional dissimilarity vector, which is well-
suited for writer-independent signature modelling.

4 Signature modelling

The system presented in this paper uses a set
of dissimilarity vectors, obtained from several dif-
ferent writers, for signature modelling. In order to
produce these dissimilarity vectors, each writer sub-
mits K genuine signatures during enrolment, that
serve as a writer-specific reference set.

A writer-independent signature model is trained
using samples of genuine signatures and skilled
forgeries, obtained from a set of guinea pig writ-
ers. These writers are considered representative of
the general public, and their signatures are used for
training purposes only. Given a set of K reference
signatures and N labelled training signatures (that
include both positive and negative samples) for
each of the Ω guinea-pig writers, the system gener-
ates a set of KNΩ dissimilarity vectors by comput-

ing �
(!)
(n,k) for k = {1, 2, . . . ,K}, n = {1, 2, . . . , N},
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(a) (b) (c)

Figure 1. Typical separation of negative and positive dissimilarity vectors, denoted by grey

markers superimposed onto black markers, respectively, when T = 2, K = 10 and (a) no nor-

malisation, (b) global normalisation or (c) writer-specific normalisation is employed.

and ! = {1, 2, . . . ,Ω}. We henceforth use the sim-
plified notation � to denote an arbitrary dissimi-
larity vector and refer to dissimilarity vectors rep-
resentative of genuine signatures and forgeries as
being positive and negative, respectively.

Dissimilarity normalisation. Let �+ and �−

denote the respective sets containing positive and
negative dissimilarity vectors, obtained from all the
guinea-pig writers. These sets provide a sufficient
platform for obtaining a DF for verification pur-
poses. However, since the data contained in �−

represent skilled forgeries, a significant degree of
overlap is observed between �+ and �− in dissim-
ilarity space (see Figure 1 (a)). In order to maxi-
mally separate these sets, thereby providing an op-
timal platform for model training, each vector in
�+ and �− has to be appropriately normalised.

A wide variety of suitable normalisation tech-
niques are documented in the literature [7]. The
system presented in this paper performs dissimi-
larity normalisation using a rescaled version of the
well-known logistic function, such that any given
dissimilarity vector � can be converted into a nor-
malised dissimilarity vector �̄ as follows

�̄ = �(�, �+, �+)

=

[

1 + exp

(

−6�

�+ + �+
+ �+ + �+

)]

−1

.(3)

We therefore shift and rescale the numerically sig-
nificant domain of the logistic function from [−6, 6]
to [0, 2(�++�+)], where the parameters �+ and �+

contain the dimension-specific means and standard

deviations of all the vectors in �+, as proposed in
[7]. The effect of this global normalisation strategy
is illustrated in Figure 1 (b).

In this paper we propose the incorporation of
dissimilarity statistics on a writer-specific level,
thereby yielding a more appropriate overall normal-
isation strategy. First, the writer-specific statistics
�+
! and �+

! are determined, using the dissimilar-
ity vectors generated by comparing every reference
signature belonging to writer ! to every other ref-
erence signature belonging to this writer. Writer-
specific normalised dissimilarity vectors are then
computed as �̄ = �(�, �+

! , �
+
! ). This separation of

positive and negative dissimilarity vectors of each
individual writer leads to improved separation of
positive and negative dissimilarity vectors across
the entire set of writers, since only strictly rele-
vant information is used in the normalisation pro-
cess. The impact of this writer-specific normalisa-

tion strategy is illustrated in Figure 1 (c).

It should be noted that the proposed writer-
specific approach to dissimilarity normalisation is
only possible if K > 1. For K = 1, no writer-
specific statistics can be obtained and the global
normalisation strategy has to be used.

Discriminant analysis. Once �+ and �− have
been maximally separated using the proposed nor-
malisation technique, a discriminant function

f(�̄) = C + L�̄+Q�̄T �̄ (4)

is used to obtain the decision boundary which max-
imises class discrimination. The values C, L and
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Figure 2. Schematic representation of the experimental protocol utilised in this paper.

Q denote the constant, linear and quadratic coef-
ficients of said decision boundary, respectively. In
this paper we consider both linear (Q = 0) and
quadratic (Q ∕= 0) discriminant functions. LDF co-
efficients are computed using a pooled covariance
estimate, whilst QDF coefficients are computed us-
ing class-specific covariance estimates.

5 Verification

The verification protocol utilised in this paper
is based on the questioned document expert’s ap-

proach [9]. Any questioned signature I
(!)
q , claimed

to belong to writer !, is first converted into a DRT-
based feature set, which is subsequently compared
to that of each of the K reference signatures be-
longing to writer !, thereby yielding a set of K

normalised DTW-based dissimilarity vectors.
Each questioned dissimilarity vector is then pre-

sented to the trained DF, in order to obtain a signed
distance measure relative to the corresponding de-
cision boundary. Each distance measure is then
converted, using the conventional logistic function,
into a partial confidence score s ∈ [0, 1]. Finally,
the set of K partial confidence scores are averaged,
yielding the final confidence score s∗ as follows

s∗ =
1

K

K
∑

k=1

[

1 + exp
(

−f(�̄
(!)
(q,k))

)]

−1

. (5)

This final confidence score is used to predict class
membership, by imposing a sliding threshold � ∈

[0, 1], such that the questioned signature I
(!)
q is ac-

cepted as genuine if and only if s∗ ≥ � .

6 Experiments

Data. The signature database considered in this
paper contains 4530 signatures (1530 genuine signa-
tures and 3000 amateur skilled forgeries) obtained

from 51 writers. For each writer, 30 genuine sig-
natures and 60 forgeries are available (except for
two writers, for whom only 30 forgeries are avail-
able). This database, known as Dolfing’s data set,
was originally captured on-line [5], but has since
been converted into an off-line representation [3],
thereby rendering it suitable for the evaluation of
the system presented in this paper.

Protocol. The experimental protocol utilised in
this paper is illustrated in Figure 2. Prior to ex-
perimentation, Dolfing’s data set is partitioned into
two disjoint subsets. This partitioning ensures that
data from different writers are used for model train-
ing and evaluation, thereby ensuring that the re-
sults reported represent an unbiased estimation of
system performance. These partitions, referred to
as the training set and evaluation set, contain the
signatures of 34 writers and 17 writers, respectively.

During model training, only the training set is
used. For every writer, K genuine signatures are
reserved for the reference set RT , whilst 30 − K

genuine signatures and 30−K forgeries constitute
the set ST considered for training. As a result,
30 +K forgeries therefore remain unused, in order
to ensure an unbiased training set. Each of the K

reference signatures is used to obtain K(30 − K)
positive dissimilarity vectors and K(30 − K) neg-
ative dissimilarity vectors. The entire set of nor-
malised positive and negative dissimilarity vectors,
obtained from all 34 writers in the training set, is
used to determine the optimal DF, which is retained
for subsequent verification.

During model evaluation, only the evaluation set
is used. For every writer, K genuine signatures are
reserved for the reference set RE , whilst 30 − K

genuine signatures and 60 forgeries constitute the
set SE considered for verification. The entire set of
genuine signatures and forgeries, obtained from all
17 writers in the evaluation set, is used to gauge
system performance.
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Table 1. Average EERs obtained when considering Dolfing’s evaluation set.

LDF K

�EER(%) 1 3 5 7 9 11 13 15

T

2 27.28 23.08 17.08 13.20 10.73 9.24 8.31 7.92
3 28.30 21.95 17.74 14.34 11.79 10.40 9.96 9.11
30 29.29 14.95 12.44 9.03 6.90 5.86 5.09 4.54
60 30.52 14.65 12.75 9.07 6.92 6.14 5.34 4.59
90 30.92 16.71 12.63 9.09 7.32 6.21 5.42 4.84
180 30.38 17.56 13.84 9.60 7.46 6.53 5.83 5.23

QDF K

�EER(%) 1 3 5 7 9 11 13 15

T

2 28.75 22.68 17.64 13.95 11.31 10.38 9.92 9.25
3 29.36 21.99 18.35 15.36 13.64 11.63 10.90 10.38
30 28.81 22.23 16.98 11.92 7.48 6.09 5.33 4.93
60 31.41 26.99 21.52 14.90 9.58 7.80 6.44 6.61
90 32.56 30.30 24.80 18.19 12.03 10.33 8.08 8.54
180 35.98 33.66 29.71 24.69 18.29 16.91 13.32 15.46

Since only 17 writers are considered for evalu-
ation, the protocol utilised in this paper employs
3-fold cross validation and repetitive data randomi-

sation, which proceeds as follows: (1) The data set
is split into three equal subsets, each containing sig-
natures from 17 writers; (2) Each subset, in turn,
is used as an evaluation set, whilst signatures from
the remaining 34 writers constitute the training set;
(3) The order of the writers is randomised and the
process is repeated. We consider 10 repetitions and
therefore report the results from 30 trials.

Results. We henceforth refer to the LDF-based
and QDF-based signature modelling techniques
considered by the system presented in this paper,
as the LDF system and QDF system, respectively.
The average equal error rate yielded by these sys-
tems is presented in Table 1. The average EER,
denoted by �EER, is obtained by considering the
evaluation set for all 30 trials. Table 1 illustrates
the influence of the parameters T and K, whilst
d = 128 remains fixed.

It is clear from Table 1 that increasing the refer-
ence set sizeK invariably (except for the two under-
lined cases) leads to an improvement in verification
proficiency. This is understandable, since this pa-
rameter plays a central role in several key phases
regarding signature modelling and verification – it
determines the training set size, the representation
potential of the writer-specific normalisation statis-
tics, as well as the size of the partial scoring pool.
Note in particular the generally significant decrease
in system performance when K = 1. When using

a single reference signature, the writer-specific nor-
malisation technique proposed in this paper can not
be utilised, which leads to sub-optimal class sepa-
ration in dissimilarity space.

It is also clear from Table 1 that an increase in
the projection angle set size T does not necessarily
improve system performance. In fact, we find that
an expanded projection angle set may in some cases
severely impede verification proficiency. This sug-
gests that it is not the number of projection profiles
included in the feature set, but rather which pro-
jection profiles are included, that determines class
separation in dissimilarity space. This is an un-
derstandable observation, since it is expected that
projections generated from a small set of signifi-
cant directions (e.g. horizontal, vertical, baseline
direction etc.) will capture the majority of signa-
ture shape variation. The inclusion of non-essential
projection profiles therefore not only leads to infor-
mation redundancy in the feature set, but also min-
imises the role of more significant projection profiles
in dissimilarity space, thereby adversely affecting
the system’s discrimination potential.

Interestingly, the LDF consistently outperforms
the QDF. Given the dissimilarity representation of
the positive and negative classes, one may expect a
non-linear DF to model class separation more effec-
tively. We find the inferior verification proficiency
of the QDF is due to over-training, resulting in in-
adequate generalisation. This assertion is substan-
tiated by noting that when the training set is also
considered for evaluation, the QDF outperforms the
LDF. These results are not tabulated in this paper.
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To our knowledge, the system presented in this
paper constitutes the first writer-independent veri-
fication system evaluated on Dolfing’s data set. We
therefore compare the results reported in this pa-
per to results reported for existing writer-dependent
systems [4, 10, 8], also evaluated on this data set
(see Table 2). Each of these existing systems re-
quires 15 genuine training signatures per writer,
prior to model optimisation. When employing a
writer-independent approach, this is analogous to
requiring K = 15 reference signatures per writer,
prior to model training.

Table 2. EERs obtained for existing sys-

tems evaluated on Dolfing’s data set.

System EER (%)
[4] (2004) 12.2
[10] (2010) 10.23
[8] (2010) 8.89

QDF (This paper) 4.93
LDF (This paper) 4.54

It is clear from Table 2 that, under similar
operating conditions, the LDF and QDF systems
significantly outperform the systems proposed in
[4, 10, 8]. In fact, from Table 1 we note that even
when reducing the reference set size to K = 9, the
systems proposed in [4, 10, 8] are still outperformed
by the LDF and QDF systems presented in this pa-
per. The most promising result, however, is that
the LDF achieves an EER of 12.44% for K = 5.
This system compares well with the systems pro-
posed in [4, 10, 8], despite having a drastically re-
duced reference set size i.e. a reference set size that
one is likely to encounter in practical scenarios.

7 Conclusion

In this paper we demonstrated that: (1) Dissim-
ilarity vectors obtained by employing the DRT and
DTW provide a successful framework for writer-
independent signature representation; (2) The in-
clusion of writer-specific statistics during dissimi-
larity normalisation improves overall class separa-
tion when training with skilled forgeries; (3) The
utilisation of these proposed techniques yields a
novel verification system that outperforms existing
systems evaluated on the same data set.

The results reported in this paper also provide
considerable insight into potential future work re-
garding system improvement. We found that the

inclusion of non-essential projection angles in the
DRT impedes system performance. Given a full
projection angle set, one may for instance utilise
a technique such as principal component analysis
(PCA) for dynamic feature selection and conse-
quent dimension reduction. Also, in order to obtain
a more robust non-linear decision boundary in dis-
similarity space, the use of more advanced discrim-
inative classifiers such as support vector machines
(SVMs) may potentially be advantageous.

The incorporation of PCA and SVMs into the
signature representation framework presented in
this paper is currently under investigation.
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