
Recognition of Relatively Small Handwritten Characters,

or “Size Matters”

Vadim Mazalov and Stephen M. Watt

Department of Computer Science

University of Western Ontario

London, Canada

{vmazalov, Stephen.Watt}@uwo.ca

Abstract

Shape-based online handwriting recognition suffers

on small characters, in which the distortions and vari-

ations are often commensurate in size with the char-

acters themselves. This problem is emphasized in set-

tings where characters may have widely different sizes

and there is no absolute scale. We propose methods

that use size information to adjust shape-based clas-

sification to take this phenomenon appropriately into

account. These methods may be thought of as a pre-

classification in a size-based feature space and are gen-

eral in nature, avoiding hand-tuned heuristics based on

particular characters.

1 Introduction

Size normalization is usually one of the early steps

in the recognition of both handwritten and typeset char-

acters, but can also be the source of errors. Characters

can have different sizes for two reasons: First, the same

symbol may appear in different sizes. An obvious ex-

ample of this would be footnotes and titles having dif-

ferent sizes from normal text. Other examples would

include: place names in map labels having greatly vary-

ing size, and the symbols of mathematics, which are

smaller when written as superscripts or subscripts or

larger when written as n-ary operators. Secondly, dif-

ferent symbols within the same symbol set may have

different size relative to each other. For example, a pe-

riod will be smaller than a lower case “o”, which will

in turn be smaller than a capital “M”. When these two

situations are combined, size normalization is a double-

edged sword—it is required, but it can also lead to in-

creased ambiguity.

We are motivated by the application of online math-

ematical handwriting recognition, where digital ink

traces are available for symbols that are typically well-

separated. Many alphabets are in use simultaneously

and there is no dictionary of valid words. Characters

will be of greatly varying size and size can vary on a

character-by-character basis, rather than word-by-word

or sentence-by-sentence. In this setting, we have found

it effective to use shape-based classification with or-

thogonal series representation of the curves traced [3].

It was observed, however, that for very small traces the

shape of the curve, when scaled, may be quite arbitrary.

In these cases, the original size of a symbol is of high

importance.

Recognition systems may adopt ad hoc rules to iden-

tify characters of unusual size, e.g. commas, long lines,

arrows, etc. What is lacking in this approach are gen-

eral principles by which such symbols requiring spe-

cial treatment may be determined without any a priori

knowledge of the symbol set, and how special rules to

recognize them may be generated.

We propose a two-step processing method with sam-

ples being first pre-classified by size, and then recog-

nized by shape. We take advantage of the usual clus-

ter analysis techniques on a space of feature vectors

computed from size measures. This may be used in

two ways: first to do absolute classification based on

size, and second, to do a blended classification, weight-

ing unusually sized samples differently than samples

whose size tends to the mean. These ideas can further

be extended to literally any symbol set to identify those

classes that are more easily separated by size measures

than shape measures, e.g. lines, dots, etc.

We present three approaches to classification of

small characters based on the relative size of the sam-

ples with respect to other symbols in the collection. The

size of all samples is expressed in a metric unit, derived

from the dataset. In the first method, that can be re-

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.257

319

garded as a 1-dimensional classifier, a feature is com-

puted from a letter based on its width and height, reg-

ulated by a parameter. Given that the parameter is op-

timized, the method is shown to yield good results for

our purposes. This method can be further extended to

linear characters, such as “–”, “|” with appropriate size

measure. The second method is a generalized version

of the first technique and it suggests to compute several

parameters not only from the size of a letter, but also

from its shape, e.g. the area of the convex hull of trace

points of the character. Then, one-vs-one support vector

machine (SVM) classification becomes a natural way to

differentiate classes, if the number of classes is small.

However, there are some dictionaries with large set of

characters that have identical shape and can only be dis-

tinguished by its size. Examples include some capital

and low-case characters from the Latin and Greek al-

phabets, e.g. Kk, Oo, most of the symbols from the Rus-

sian alphabet, e.g. Vv, Gg, Dd, Ii, musical notation,

and Benesh notation. The third approach is the most

robust and suitable for collections with large number of

small classes. The distance to the convex hull of coef-

ficients of approximation of coordinate functions [4] is

adjusted based on the size of the test sample and the av-

erage size of samples in the candidate class. All of the

methods are shown to improve significantly the current

state of our algorithm with respect to small characters.

The rest of the paper is organized as follows. Some

of the preliminaries are given in Section 2. Descrip-

tion of the size-sensitive classification schemes is given

in Section 3, including the details of the measurement

unit, the 1-dimensional and 3-dimensional classification

algorithms, as well as the weight-based method. Ex-

perimental setting and results are reported in Section 4.

Section 5 concludes the paper.

2 Previous Work

Partially related problems have been studied in the

past. A conventional approach to identification of small

samples is by comparison with a fixed threshold, ex-

pressed in pixels. The adaptive normalization method

developed in [7] adjusts the size of a character based

on its aspect ratio. In [2] it is proposed to estimate the

principal line, and correspondingly the size of symbols,

using the pixel count histogram when projected on the

vertical axis. Recognition rate of handwritten numerals

depending on the size was investigated in [5]. In [10] it

is proposed to perform size normalization with Hough

transform.

These methods are designed for either processing

characters independently or for extraction of informa-

tion from a set of characters. In contrast, we propose

Figure 1. Examples of scaled small char-
acters from the top row to the bottom: pe-
riod, comma, quotes.

to apply special classification rules to relatively small

symbols.

An efficient and accurate technique for online clas-

sification of characters has been developed in [3, 4].

In the approach, the feature vector of a character is

constructed from coefficients of approximation of the

strokes with orthogonal polynomials. Classification is

based on the minimal distance to convex hulls of train-

ing classes, where each character is represented as a

point with coordinates being the coefficients of approx-

imation. Normalization of a sample with respect to size

is achieved by normalizing the coefficients vector so

that its norm is equal to one. The method was tested on

a collection of handwritten samples, and can be as well

used as a general purpose algorithm for recognition of

two-dimensional patterns. The technique is overall ro-

bust, but has a drawback, related to size-normalization

– it does not take into account the initial size of a sam-

ple. As a result, small samples are scaled to the size

of a regular character that leads to incorrect classifica-

tion. Examples of small samples are shown in Figure 1,

where it is easy to observe that, for instance, normal-

ized period can be mis-classified as many other sym-

bols, comma resembles a closing bracket, while quotes

are hard to distinguish from “11”. Thus, the algorithm

requires a robust adaptive size normalization approach.

3 Size-Sensitive Classification Schemes

3.1 The Unit of Measurement

To treat small samples efficiently, one has to identify

what the small character is. The size of a small symbol

should not be dependent on the device, nor identified

as a constant amount of pixels. Instead, the size should

be expressed in terms of some properties of the dataset.

Similar to the notion of Ex-typography, we choose to

take the average height of lower-case x as the unit mea-

sure, and denote this value as ex, analogous to the ex

measure in CSS [1]. In other words, ex can be under-

320

stood as a metric unit for all characters in a database.

In this setting, we can separate small classes from other

classes based on dynamic size measures.

3.2 1-Dimensional Classification

The algorithm described in this section is the sim-

plest form of a classifier, since only one feature is an-

alyzed – the size of the sample. Despite its simplicity,

in the experimental section we show that this technique

has very low error in recognition of certain classes due

to the dynamic nature of the size measure.

The Size Measure If the size of a character c is an-

alyzed by its bounding box, there are essentially two

types of size measures: perimeter-based and area-based.

The perimeter-based measure is studied in this section

s(c) = αw(c)+h(c) , where α is a parameter, w(c) and

h(c) are width and height of the bounding box of the

character. We empirically find the α that gives the low-

est classification error. The area-based feature is con-

sidered in Section 3.3.

Classification Consider a dataset with only two

classes {◦,×} that are to be classified with respect to

size, and the average size of ◦ is less than the average

size of ×. Let s{◦,×} be the size threshold that sepa-

rates the classes. Then a sample from the class ◦ (×)

is considered to be classified incorrectly, if its size is

greater (smaller) than s{◦,×}. We denote with I◦ (I×)

the set of incorrectly classified samples of ◦ (×). Then,

the overlap of the classes is computed as

D{◦,×,s{◦,×}} =
∑

i∈I◦

(s(i)−s{◦,×})+
∑

i∈I×

(s{◦,×}−s(i))

The threshold s{◦,×} that minimizes the overlap can

be found in O(n) given that sizes have been computed

and stored in a sorted array, where n is the total number

of samples in ◦ and ×, see Algorithm 1 for details. The

algorithm can be easily extended to an arbitrary amount

of classes.

The classification error is measured as described in

Algorithm 2.

3.3 3-Dimensional Classification

In this scheme three features are extracted from char-

acters: the height and the width of the bounding box,

and the area of the convex hull of points of the sam-

ple, see Figure 2. We test whether these indicators are

sufficiently discriminative with an SVM classifier.

Algorithm 1 Find Separating Threshold(S◦, S×, s)

Input: S◦ – the set of samples of the class ◦, S× – the

set of samples of the class ×, s – the array of sizes of

samples from both classes, sorted in ascending order.

Output: s{◦,×}.

Compute differences between consecutive elements

of S as ∆i = s[i]− s[i− 1], i = 1, .., n.

D{◦,s[n]} ← 0
for all i = n− 1 to 0 do

Compute the overlap for samples of the class ◦, if

s[i] is the threshold

D{◦,s[i]} ← k{◦,s[i]}∆i+1 +D{◦,s[i+1]}

where k{◦,s[i]} is the number of incorrectly dis-

criminated samples of ◦ for the threshold s[i].
end for

D{×,s[0]} ← 0
for all i = 1 to n do

Compute the overlap for samples of the class ×, if

s[i] is the threshold

D{×,s[i]} ← k{×,s[i]}∆i +D{×,s[i−1]}

where k{×,s[i]} is the number of incorrectly dis-

criminated samples of × for the threshold s[i].
end for

for all i = 0 to n do

D{◦,×,s[i]} ← D{◦,s[i]} +D{×,s[i]}

end for

return {s[m] | D{◦,×,s[m]} = min
i=0..n

D{◦,×,s[i]}}

Algorithm 2 classificationError(α)

Input: α - the parameter in the size measure.

Output: Classification error.

For the given α: Compute sizes of samples.

{In 10-fold cross-validation over the dataset}
for i = 1 to 10 do

Take the i-th training set and find s{◦,×} with Al-

gorithm 1.

Test s{◦,×} with the i-th test set. The classification

error is reported as the ratio of incorrectly discrim-

inated samples to the total number of samples in

the test set.

end for

return The average discrimination error over the 10

runs.

3.4 Weight-based classification

The letter “.” can usually be classified based on its

size in ex units. By analyzing sizes of characters in a

321

Figure 2. Convex hull of a sample
Algorithm 3 WeightedClassification(x)

Input: x - a test sample.

Output: The result of classification.

sx ← width(x) + height(x)

{Select k nearest neighbours of candidate classes

C1, ..., CN , as described in [4]}
for i = 1 to N do

di ← D(x,CHNNi
k)

if Ci is a class of small symbols then

di ← (ω(sx) + β|ω(s̄i)− ω(sx)|) · di
end if

end for

return Cj |dj = min
i=1..N

di

dataset, one can obtain the minimal size threshold of

samples, other than “.”. If the size of a test sample is

smaller than the threshold, then it is automatically clas-

sified as “.”. If the size is greater, the character still can

be “.”. Therefore, the class of “.” is considered in com-

putation of distances, described below.

Unlike “.”, other small symbols, such as “,”, preserve

its initial shape after normalization, even though the let-

ter maybe scaled significantly and appear as a differ-

ent character. Thus, the shape and size should both be

considered in classification. The distance to the small

classes is adjusted based on the average relative size of

samples in the class and the relative size of the test sam-

ple

Dadj = (ω(sx) + β|ω(s̄i)− ω(sx)|) ·D(x,CHNNi
k)

where sx is the relative size of the test sample x (the

sum of its width and height), s̄i is the average rela-

tive size of samples in the test class i, β is a param-

eter, D/Dadj(x,CHNNi
k) is the distance/adjusted dis-

tance from the test sample to the convex hull of k near-

est neighbours of the class i [4], where i is one of the

small classes. The distance to regular-size classes is

computed without the weight adjustment. We take the

function ω(s) to have the form sγ where γ is a numeric

parameter to be evaluated. See Figure 3 for examples of

ω(s). This method is illustrated in Algorithm 3.

Besides their size, small characters can usually be

Figure 3. Examples of the weight function
depending on the relative size: ω(s) =
s1/4, ω(s) = s, and ω(s) = s4

Figure 4. Relative frequency vs relative
size for the different classes in the OR-
CCA dataset

differentiated by positioning, relative to the baseline

and mean line. However, we leave that analysis to an-

other recognition layer, responsible for the spatial seg-

mentation of formulas.

4 Experiments

4.1 Experimental Setting

The experimental dataset is based on the database

of handwritten characters, collected at the Ontario Re-

search Centre for Computer Algebra, a subset of the

dataset described in [4]. Since the dataset does not con-

tain classes with small characters, we obtained samples

“.” and “,”/“′” by decomposing the following symbols:

“:”, “ä”, “÷”, “ȧ”, “
.
=”,“!”,“. . .”,“i”,“j”,“�”,“?”,“;”.

Visual examination of the small characters written

within the context of another character and the small

letters written independently did not reveal significant

differences. Therefore, we find this setting adequate.

322

Figure 5. The classification rate depending on α for: “.” and “,” (left), “.” and the rest of the
classes (centre), “,” and the rest of the classes (right)

Overall, we have collected 803 samples of “.” and 315

samples of “,”/“′”.

The physical size of an ex unit is 823. The relative

frequency of sizes of samples, shown in Figure 4, was

computed as follows:

1. Split the range of sizes in k intervals:

(s0, s1), (s1, s2), ..., (sk−1, sk). In the exper-

iments, k = 40.

2. The relative frequency on an interval m is found

as the ratio of the number nm of samples in the

interval to the total number of samples in the class:

nm/
∑i=k

i=1 ni.

3. Sizes are computed as the sum of width and height

with α = 1.

Note, that the most frequent size of “.” is ≈ 0.02ex.

Therefore, the value of 0.01ex may be interpreted as

thickness of digital ink and can be used in calligraphy

of recognized characters or for beautification of scripts.

Another interesting observation is that the frequencies

seem to be centered approximately at ex = 2, which

proves ex being the appropriate unit of measure for this

type of analysis.

The recognition experiments were performed in 10-

fold cross-validation: each collection has been split ran-

domly in 10 approximately equal parts and the classifi-

cation rate has been measured 10 times.

4.2 Performance before the Improvement

To estimate the performance of the methods devel-

oped in this paper, we first measure recognition of

small characters with the algorithm described in [4] and

optimized in [8], where 97.6% classification rate was

achieved. The recognizer is trained with all samples

from our dataset (small and regular) and tested with

small samples. The obtained classification error of the

small samples is≈ 17.5%, which is significantly higher

Figure 6. The recognition error depend-
ing on the size threshold for s{“.”,{...}},
s{“.”,“,”}, and s{“,”,{...}}

than the classification error of regular sized characters

reported in [8].

4.3 1-Dimensional Classification

In this experiment, all characters are divided in three

parts: “.”, “,”, and the rest of the regular size classes in

the dataset, denoted as {...}. The objective is to find op-

timal values of α that allow correct pair-wise discrim-

ination between the parts. The recognition error as a

function of α is shown in Figure 5. The values of α that

yield the lowest classification error between “.” and “,”

(0.6%), “.” and {...} (0.2%), “,” and {...} (0.8%) are re-

spectively 0.1, 1.3, 4.4, and the values of the size thresh-

old s{◦,×} are respectively 0.26ex, 0.34ex and 0.95ex.

The stability of the recognition error depending on the

threshold is shown in Figure 6.

4.4 3-Dimensional Classification

These experiments were performed with the SVM-

Java [6], a Java implementation of SMO [9] technique

323

Table 1. Classification error, depending
on β and γ

β 0.3 0.6 0.3 0.6 0.9 0.3 0.6 0.9

γ 2.4 2.4 2.7 2.7 2.7 3.0 3.0 3.0

Er.,% 2.75 3.48 2.76 2.94 3.21 2.06 2.23 2.60

for training an SVM. A subset of the collection of reg-

ular classes has been considered in this experiment: we

randomly selected 1000 samples. The classes of “.” and

“,” remained unchanged. The following respective error

rates have been obtained for one-versus-one classifica-

tion with the linear kernel for the classes “.” and “,”, “.”

and {...}, “,” and {...}: 2.38%, 1.44%, 4.92%. These

results can be further improved by considering alterna-

tive kernels.

4.5 Weight-based classification

With optimization of the parameters β and γ, we ob-

tained the classification error, as reported in Table 1.

With the best result of 2.06% error, one can observe sig-

nificant improvement over the original error of 17.5% of

the algorithm on small samples.

5 Conclusions and Future Work

We have presented methods to address the large

shape variations that can occur in small characters in

handwritten samples. When there are only one or two

classes which have much smaller characters than the

rest, we have found that simple discrimination based

on an optimized linear combination of width and height

to be very effective. We have shown this can be com-

bined effectively with shape-based methods by weight-

ing shape and size depending on size of typical charac-

ters in the classes. We have found that using the area of

the convex hull of characters, rather surprisingly, does

not improve the accuracy over using a linear combina-

tion of width and height.

The presented work does not address differentiation

between disconnected segments of a symbol and inde-

pendent small characters. This is the question of recog-

nition of groups of strokes that can be solved by con-

struction of classification theories and computation of

the confidence of each theory. In this paper we have fo-

cused on devising general methods for very small char-

acters. In the future, we wish to examine how these

ideas can be applied to the automatic identification and

pre-classification of very large characters.

References

[1] Cascading style sheets (css) snapshot 2010, May 2011.

W3C Working Group.

[2] H. S. Beigi, K. Nathan, G. J. Clary, and J. Subrahmonia.

Size normalization in on-line unconstrained handwrit-

ing recognition. In Proc. IEEE Int’l Conf. Acoustics,

Speech and Signal Processing, pages 169–172, 1994.

[3] B. W. Char and S. M. Watt. Representing and character-

izing handwritten mathematical symbols through suc-

cinct functional approximation. In Proc. ICDAR, pages

1198–1202. IEEE Computer Society, 2007.

[4] O. Golubitsky and S. M. Watt. Distance-based clas-

sification of handwritten symbols. International Jour-

nal on Document Analysis and Recognition, 13(2):113–

146, 2010.

[5] C. L. He, P. Zhang, J. Dong, C. Y. Suen, and T. D. Bui.

The role of size normalization on the recognition rate

of handwritten numerals. The 1st IAPR TC3 NNLPAR,

1:1–5, 2001.

[6] X. Jiang and H. Yu. SVM-JAVA: A java implementa-

tion of the SMO (sequential minimal optimization) for

training SVM, 2008.

[7] C.-L. Liu, M. Koga, H. Sako, and H. Fujisawa. Aspect

ratio adaptive normalization for handwritten character

recognition. In Proc. of the Third International Confer-

ence on Advances in Multimodal Interfaces, ICMI ’00,

pages 418–425, London, UK, 2000. Springer-Verlag.

[8] V. Mazalov and S. M. Watt. Improving isolated and

in-context classification of handwritten characters. In

Proc. Document Recognition and Retrieval XIX, (DRR

XIX), San Francisco, California, January 2012.

[9] J. Platt. Sequential minimal optimization: A fast algo-

rithm for training support vector machines. Advances in

Kernel Methods-Support Vector Learning, 208:98–112,

1999.

[10] A. Rosenthal, J. Hu, and M. Brown. Size and orienta-

tion normalization of on-line handwriting using hough

transform. In Proc. of the 1997 IEEE International Con-

ference on Acoustics, Speech, and Signal Processing

(ICASSP ’97) -Volume 4 - Volume 4, ICASSP ’97, pages

3077–, Washington, DC, USA, 1997. IEEE Computer

Society.

324

