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Abstract

Feature extraction is an important step in off-line

handwriting recognition systems to represent raw hand-

writing in a low-dimensional, tractable feature space.

Traditionally, linear feature transforms such as Prin-

ciple Component Analysis (PCA), Linear Discrimina-

tive Analysis (LDA) are commonly used. The assump-

tions they make, however, usually cannot be satisfied in

practice and thus the best performance is not obtained.

In this paper, we apply the Region-Dependent non-

linear feature Transform (RDT) to handwriting recogni-

tion. RDT is one type of non-linear feature transforms

which captures the discriminating power much better

than traditional linear ones. We justify the effectiveness

of RDT on handwriting features using an HMM-based

handwriting recognition system on an Arabic handwrit-

ing dataset, which consists of 38K pages of handwrit-

ing, over 3M handwritten words. Experimental results

show that RDT is able to decrease the word error rates

(WERs) relatively by 4% to 7% with statistical signifi-

cance, comparing to two LDA-based baseline systems.

∗Jin Chen performed this work during his summer internship at

Raytheon BBN Technologies.
1This paper is based upon work supported by the DARPA MADCAT

Program.
2The views expressed are those of the author and do not reflect the

official policy or position of the Department of Defense or the US

Government.

1. Introduction

Handwriting recognition is a task of converting the

handwriting signal, an ink sequence or a static text im-

age, into a text transcription. Due to the complexity of

the raw signal, handwriting recognition systems usually

work on discrete features extracted from the raw sig-

nal. In addition, feature transform is employed for the

following two reasons: (1) to resolve the correlation be-

tween dimensions of features. (2) to alleviate the data

sparsity problem in a high dimensional space by forcing

discriminating power into fewer dimensions.

The commonly used linear feature transforms are

Principle Component Analysis [6] (PCA), Linear Dis-

criminative Analysis [6] (LDA), and Heteroscedastic

Linear Discriminant analysis (HLDA) [11]. Although

conceptually and/or computationally intuitive, these lin-

ear feature transforms do not always produce the op-

timal transform for practical problems. For example,

PCA does not preserve any discriminative information

between classes. From this perspective, LDA is more

suitable for compressing information within each class,

while preserving distances between different classes for

multi-class classification problems, e.g., handwriting

recognition. However, both LDA and PCA may fail

when the classes are not normally distributed. In ad-

dition, LDA will also fail when the within-class dis-

tributions are heteroscedastic [10]. HLDA relaxes the

assumption of equal-variance data and modifies the ob-

jection function such that discriminative information is

forced into the first several dimensions [11]. However,

HLDA is more sensitive than LDA to correlated data

and thus performs poorly when feature frame concate-
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nation is commonly used in HMM-based handwriting

recognition systems.

In this paper, we employ a non-linear feature trans-

form called Region Dependent Transform [22] (RDT),

which has proven to be effective in automatic speech

recognition. RDT is discriminatively optimized us-

ing the criterion called Minimum Phoneme Errors [18]

(MPE), which relates the transform directly to the Word

Error Rates (WERs) in recognition systems.

In the remaining of this paper, we will first briefly

describe the idea of RDT in Section 2 and its training

in Section 3. Next, we will explain the main modules

in the HMM-based handwriting recognition engine in

Section 4. Then in Section 5, we introduce the ex-

perimental setup including the data preparation, pre-

processing, and the features we use for evaluation. Fi-

nally we present experimental results in Section 6 and

conclude in Section 7.

2. Region Dependent Transform [22]

RDT is a region-dependent transform by which the

feature space is divided into N regions, and each re-

gion has a different transform to apply. The feature

space is divided by a global Gaussian mixture model

(GMM) on all training samples. Quoting the definitions

in [21], RDT can be written as a collection of N vector-

to-vector functions:

FRDT (ot) =
N
∑

i=1

k
(i)
t fi(ot) (1)

where ot is a given input observation vector at time t,

usually a frame-concatenated feature vector with hun-

dreds of dimensions. fi(·) is one of a collection of trans-

formation functions: {fi : R
n 7→ R

p | i ∈ [1, N ]}, and

k
(i)
t is the posterior probability of region i given the ob-

servation vector, and the total likelihood with respect to

all Gaussians, assuming equal prior probability of each

region:

k
(i)
t =

N (ôt | µi, σi)
∑N

j=1N (ôt | µj , σj)
(2)

where N (·) is the probability density function of a

multi-variant Gaussian, and ôt = Aot is the projected

feature vector computed from the projection matrix A.

The addition in Eq. 1 is to compensate ambiguity of as-

signing a feature vector to one single region, i.e., several

regions can overlap in the Gaussian mixture model.

Ideally, the region posterior k
(i)
t should be computed

using ot. But since features are usually concatenated

from the neighbor sliding windows, GMM’s covariance

matrices acquired in the original feature space will not

HMM 

Apply Feature Transform Ω

Transformed Feature Ô

Original Feature O

Init. / Update Model

λ̂

Compute MPE Function Derivative RDT Derivatives

Update Parameter

New Feature TransformFΩ

Figure 1. A flowchart of RDT parameter
optimization under the HMM-based hand-
writing recognition model [21].

be diagonal due to high correlations. Thus, we approxi-

mate the likelihood in a lower dimensional space using

a boost-strapping feature transform A (usually LDA).

In this work, we chose a linear transform in each re-

gion for simplicity:

fi(ot) = Aiot (3)

The subscript i in Ai indicates that the projection ma-

trix may differ in different regions, although at the ini-

tial stage, all Ai are the same if we use a global LDA

transform to project all original feature vectors.

It should be noted that RDT is not the only way

to employ non-linear feature transforms, however, sev-

eral alternative ways are shown to exist under the same

framework of RDT [17, 5].

3. RDT Training

The workflow for the RDT training is shown in Fig-

ure 1. As we can see, this is an iterative framework for

RDT parameter estimation. First, we apply an initial

feature transform to original feature vectors so that the

following RDT training is conducted in the projected

feature space. Next, we use the single-pass retraining

(SPR) [8] to initialize the HMM model λ. Then we

compute the derivatives of the MPE objective functions

with respect to the feature transform parameter vector

Ω:

Ω = [vec(A1)
T , vec(A2)

T , . . . , vec(AN )T ] (4)
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where “vec(·)” is a function that returns a column vector

from a matrix by stacking the column vectors of the ma-

trix. After computing the “direct-RDT” and “indirect-

RDT” derivatives (explained below), we obtain the up-

dating rules for the RDT parameter Ω that is needed to

update the feature transform functions.

RDT training tries to find a set of region dependent

feature transforms such that the resulting HMMs has the

best MPE score if it is trained under the ML criterion us-

ing the transformed features. In [21], the MPE objective

function [16, 18] can be formulated as follows:

H(X, λ) =
R
∑

r=1

K(r)
∑

k=1

P (Xr |Wrk, λ)
βP (Wrk)α(Wrk)

∑K(r)
k′=1 P (Xr |Wrk′ , λ)βP (Wrk′)

(5)

where:

i) X = {X1, . . . , XR} is the sequence of all trans-

formed feature vectors of all R training text lines.

ii) λ is a set of trainable parameters of the HMM

model for handwriting recognition, which consists

of the means and covariances of the Gaussian com-

ponents. This is also referred as the codebook in

the literature.

iii) Xr = {xr
1, . . . , x

r
T (r)} is the sequence of trans-

formed feature vectors of text line r, whose length

is T (r).
iv) Wrk is one of the K(r) hypotheses for the word

sequence of text line r.

v) α(Wrk) is the character accuracy score of the hy-

pothesis against the reference transcription.

vi) β is a constant used to adjust the dynamic range of

the scoring.

Two types of dependence exist between the objec-

tive function H(X, λ) and the feature transform fi(·).
First, the transformed feature vector xt is the output of

the feature transform function fi(·). Second, the means

and covariances in the HMM model also depend on the

feature transform since they are updated by the Maxi-

mum Likelihood (ML) criterion during RDT training.

Now we compute the MPE function derivatives with

respect to the transform parameter Ω using the chain

rule:

∂H(X, λ)

∂Ωk

=
R
∑

r=1

T (r)
∑

t=1

∂H(X, λ)

∂xr
t

∂xr
t

∂Ωk

(6)

Note that the second term
∂xr

t

∂Ωk

only depends on the fea-

ture transform so it is easy to compute. For the first

term, we can further rewrite it as:

∂H(X, λ)

∂xr
t

=

(

∂H(X, λ)

∂xr
t

)

λ

+

(

∂H(X, λ)

∂λ

)

xr

t

∂λ

∂xr
t

(7)

where the first term is referred as the “direct-RDT”

which assumes the HMM model λ holds constant, so

1 2 3 4 5

0.2 0.2 0.2

0.3 0.2 0.4 0.3 0.5

0.5 0.6 0.4 0.7 0.5

Figure 2. An example of a 5-state HMM
with the Bakis topology. To recognize a
character, the HMM model aligns the fea-
tures to the internal states and evaluate
the entire observation probability.

H(·, ·) only depends on the transformed features xr
t .

The second term is referred as the “indirect-RDT” since

the means and covariances in λ also depend on the

transformed feature vectors xr
t . For further details on

deducing the two derivatives into computational forms,

refer to [21].

4. HMM-based Handwriting Recognition

System

Figure 2 shows an HMM model that is used for hand-

written text line recognition. This is a character HMM

that can be easily extended to word HMMs and text line

HMMs, by concatenating character ones.

4.1 HMM Training

HMM training estimates parameters for the HMM

model: transition probabilities between states, the

weights of Gaussian mixture components, and the

means and diagonal covariances of Gaussian compo-

nents in the output probability distribution. In our ex-

periments, we use 14-state Bakis HMMs for handwrit-

ten text line recognition [14]. The training is done by

the Baum-Welch algorithm [15].

In addition, character tied method (CTM) [9] and

State tied method (STM) [12] are employed in the

HMM training for extensive parameter estimation.

CTM means that all characters share the same code-
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book, i.e., the same means and diagonal covariances of

the Gaussian components, and they only differ in the

weights ck. In STM, each state of all HMMs associated

with every character has one codebook.

4.2 HMM Recognition

The HMM recognition, also known as decoding,

refers to the process of determining an optimal state se-

quence through the HMM network that has the maxi-

mum probability. The decoding is done by the two-pass

(forward and backward) beam search [1, 19]. In addi-

tion, we use a trigram language model to guide the path

search in which the probabilities of all triplets of words

in the training dataset are computed.

5. Experimental Setup

5.1 Data Preparation

The dataset is an Arabic handwritten document cor-

pus that includes multiple writers, various paper materi-

als and writing instruments. For each page, every hand-

written text line and its associate words are labeled by

polygons. For each polygon, the text transcription is

also provided.

We employed two types of pre-processing to facil-

itate handwriting recognition. First, we detected and

removed pre-printed rulings, meanwhile any broken

strokes were recovered by stroke generation [2]. Sec-

ond, we made use of the text line polygons to crop out

handwritten text lines for HMM training and recogni-

tion. Then, to minimize the variations of handwriting,

we corrected the slant of each word to make sure the

vertical strokes are perpendicular to the baseline [20].

Finally, we divided handwritten text lines into three

groups: training, developing, and testing sets. A break-

down of these three datasets is shown in Table 1.

Table 1. Datasets in experiments.
Training Developing Testing

# of pages 37,608 560 545

# of lines 658,691 9,029 10,017

# of words 3,820,433 56,912 61,023

5.2 Feature Extraction

5.2.1 Gabor Features

We applied Gabor filtering in four directions and we

used the magnitude as the response for feature extrac-

tion [3]. After the filtering, we divided the input image

frame equally into 12 rows and computed the feature

vector as a concatenation of features in each grid. This

resulted in 48-D Gabor features.

5.2.2 GSC Features

Gradient-Structural-Concavity (GSC) features are

multi-resolution features that combine three different

shape attributes of the text: gradient representing the

local orientation of strokes; structure information that

extends the gradient to longer distance and provides

information about stroke trajectories; and concavity

that captures stroke relationships at long distances [7].

We divided each image frame equally into 12 rows and

the feature vectors are 96-D features.

5.2.3 Other Features

Other features include Percentiles (20-D), Angle (6-D),

Correlation (6-D), and Energy (1-D). Details on these

features are explained in [13].

5.2.4 Feature Transform

As we can see, for each image frame, we have an

177-D feature vector. Then, features in adjacent frames

are concatenated so that the long-span feature can ex-

press more structure information. This process results

in 531-D feature vectors.

After computing all different types of features for all

training samples, we normalized feature vectors at all

their dimensions. This is to ensure that for each dimen-

sion, all the training samples are approximately nor-

mally distributed N (0, I). Next, we applied the LDA

transform to reduce feature dimensions to 17 for the fol-

lowing experiments.

5.3 Baseline Systems

The first baseline system uses LDA for feature trans-

form and the ML criterion for HMM training. The sec-

ond baseline uses LDA for feature transform and the

MPE criterion for HMM training. The proposed sys-

tems use RDT for feature transforms.

6. Experimental Results

6.1 RDT Training

First we show the iterative training for RDT in Fig-

ure 3. Since we used the MPE objective function for

RDT training and MPE correlates well with WERs, we
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Figure 3. A diagram showing the RDT
training process.

can see that with more iterations, WERs gradually de-

creased. In addition, at the end of each iteration, we

obtained an updated HMM model and updated feature

transforms. Of course, we should bear in mind that the

lowest WER on the training dataset does not guarantee

the best performance on the testing dataset. Indeed, we

should also take into account of the over-fitting issue.

Ideally, termination of the RDT training should be

decided by a regression test on the developing dataset.

Due to the scale of the datasets, however, we chose to

try a subset of all training products (i.e., codebooks, fea-

ture transforms) on the developing dataset and select the

one that minimizes WERs. A performance diagram of

RDT on the developing dataset is shown in Figure 4.

At the initial stage, the RDT training iteratively opti-

mizes the HMM codebook and the feature transform in

each region. When it arrived at a local minimum (Itera-

tion 10), the training started to over-fit. This is why the

WER curve descends in the RDT training (Figure 3),

while starting to ascend after Iteration 10 in Figure 4.

6.2 HMM Recognition using Optimized Fea-
tures

After RDT training, we first applied the optimized

feature transforms to the developing and the testing

samples. Then, we replaced the codebooks in the base-

line systems with the one from RDT training.

We used Developing Dataset to estimate the weights

for two scores: acoustic score from the HMM decod-

ing and alignment score from the language model scor-

ing. Then we used the optimized weights to compute

the WERs on Testing Dataset. The WERs on Develop-
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Figure 4. A diagram showing performance
on the validation dataset.

ing (best only) and Testing are shown in Table 2. As

we can see, MPE-based systems outperform ML-based

systems. In addition, although the ML-based systems

have low WERs already, the RDT-boosted systems are

still able to gain in performance, 7% relative for the ML

system and 4% relative for the MPE system.

Table 2. System performance compari-
son, shown in word error rates (WERs).

Developing Testing

LDA+ML 14.3% 12.8%

RDT+ML 13.5% 11.9%

LDA+MPE 12.2% 10.7%

RDT+MPE 11.6% 10.3%

6.3 Statistical Significance Test

We now justify that these performance gains are sta-

tistically significant. Dietterich [4] suggests evaluating

the difference between two classification approaches

using the McNemar’s test:

Z2 =
(|n01 − n10| − 1)2

n10 + n01
. (8)

where we first divided misclassified samples into two

groups, and then stated the hypothesis test:

i) n01: number of samples misclassified by the pro-

posed system, but not by the baseline.
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ii) n10: number of samples misclassified by the base-

line system, but not the proposed one.

iii) Null HypothesisH0: The two systems perform the

same.

iv) Alternative Hypothesis H1: The proposed system

performs better.

It turned out that the test statistic Z2 approximately

follows the χ2 distribution with 1 degree of freedom.

After counting n01 and n10 from the recognition results,

we looked up the test statistic in the χ2 table. We con-

clude by stating that the performance gains are statisti-

cally significant at a confidence level of 99%.

7. Conclusions

Traditional linear feature transforms such as PCA

and LDA, usually assume conditions that are hardly sat-

isfied in real problems. In this work, we show how to

adopt a non-linear feature transform in the HMM-based

handwriting recognition systems, which has proven to

be useful in automatic speech recognition. Compar-

ing with the LDA-based baseline systems, RDT-boosted

systems are able to generate 4% to 7% relative gains. As

for future work, we plan to apply RDT in other modali-

ties of the HMM-based systems for handwriting recog-

nition, e.g., writer-dependent adaptive systems, etc.
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