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Abstract 
 

We present a system for recognizing online 

mathematical expressions (ME). Symbol recognition is 

based on a template elastic matching distance between 

pen direction features. The structural analysis of the 

ME is based on extracting the baseline of the ME and 

then classifying symbols into levels above and below 

the baseline. The symbols are then sequentially 

analyzed using six spatial relations and a respective 2d 

structure is processed to give the resulting MathML 

representation of the ME. The system was evaluated on 

the Competition on Recognition of Online Handwritten 

Mathematical Expressions (CROHME) 2011 datasets 

and demonstrates promising results. 

 

 

1. Introduction 
 

The problem of mathematical expression (ME) 

recognition has been a subject of intensive research for 

over 40 years [1]. Throughout these years a few 

surveys have been reported [2, 3, 4, 5] with the most 

recent of Zanibbi et al. in 2011 [4] which also 

addresses the task of Mathematical Information 

Retrieval. 

ME recognition is still a challenging problem in 

pattern recognition, not only due to the large variety of 

mathematical symbols, but also because of the two-

dimensional (2d) structure of MEs. In contrast to the 

way plain text is written, mathematical symbols can be 

written out of the main baseline. The task of designing 

a mathematical recognizer becomes difficult as the 

number of symbols that the system has to process 

becomes large. The database of such a system varies 

from symbols including Latin and Greek letters and 

numerals to more specialized mathematical symbols 

like summation, integral, gradient etc. In addition, 

mathematical symbols vary in sizes (e.g. the sum 

operator is very large) and even the same symbols 

appear in different sizes (e.g. subscripts). Furthermore, 

there is a great variance in the writing style of each 

writer. 

Mathematical expression recognition can be divided 

in two stages: (i) symbol recognition and (ii) structural 

analysis of the ME. In recent years, the recognition of 

mathematical symbols has reached an accuracy rate of 

over 95% [4]. Hence, the research of the ME 

recognition has been focused on the efficient grouping 

of strokes that forms the symbols and in the structural 

analysis of the ME. Research efforts have been made 

with the use of HMM methods that perform symbol 

recognition in conjunction with stroke grouping into 

symbols [6] or by employing features that approximate 

handwritten strokes via linear combinations of basis 

vectors and parametric curves [7]. A system that 

simultaneously segment, recognize and interpret the 

ME using a contextual language model is described in 

[8], and a progressive grouping algorithm for symbol 

recognition is introduced in [9]. 

In the area of structural analysis of MEs, a number 

of techniques have been employed based on operator 

dominance [10], on cutting pixel projection profiles 

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.172

193



[11], on identification of symbols of the dominant 

baseline [12] and on penalty graph minimization [13]. 

The organization of the paper is as follows. In 

Section 2 we present the method of the overall system 

used for recognizing online handwritten mathematical 

expressions. In this work we develop a system that 

simultaneously groups strokes according to the highest 

recognition rate of the resulted symbol. The method of 

symbol recognition used in this work is described in 

detail in [14]. Then, a hierarchical structure, describing 

the 2d layout of the mathematical symbols in the ME, 

is build.  Section 3 discusses the experimental results 

and in Section 4 we present our conclusions and 

discuss future work.  

 

2. Mathematical expression recognition 
 

Mathematical expression recognition mainly 

consists of two stages: i) symbol recognition and ii) 

structural analysis of the ME. Finally, a mark up 

language like MathML [15] is used for the 

interpretation of the content of the ME. 

 

2.1. Symbol recognition 
 

The basic element of an on-line handwritten 

mathematical expression is called stroke. A stroke “s” 

is a finite sequence of coordinates ( , )i is x y� , 

between a pen-down and pen-up actions and represents 

the trace of the digital pen on the writing surface. In 

Figure 1a, we enumerate the strokes of the 

mathematical expression following their time order. A 

mathematical symbol may consist of one or more 

strokes. In addition, a symbol may result as a 

combination of intersected strokes (e.g. “+”), or non-

intersected strokes (e.g. “=”), or a mixture of both 

intersected and non-intersected strokes (e.g. “� ”).   

In the proposed system, the first step is to parse the 

strokes of the ME, and identify those stokes that 

resemble to horizontal lines.  A stroke recognized as 

horizontal line that is not intersected with any other 

stroke, either represents the fraction symbol, or the 

minus symbol, or is part of the equal symbol. For 

example, in Figure 1a we detect strokes with labels {3, 

4, 6} as isolated horizontal lines. In particular, strokes 

3 and 4 form an equal symbol, while stroke 6 can be 

either a fraction line or a minus symbol. We shall 

address this ambiguity later in this section.  

The next step in the proposed pipeline concerns 

grouping of successive strokes, considering their time 

order of writing, into symbols. This is done by 

simultaneously grouping and recognizing the symbol 

resulting from the candidate group of strokes. The task 

is performed recursively in a time-window of k 

successive strokes. The value of k defines the 

maximum number of successive strokes that belong to 

the same symbol. Based on the training set of 

CRHOME 2011 [16], we have set k equal to 4. The 

most likely symbol is the one with the highest 

recognition rate among the candidate ones (see Figure 

1b and 1c). For instance, by examining strokes 8 and 9 

in Figure 1, we conclude that they should be merged to 

form the symbol “d” (see Figure 1b). 

  
(a) (b) 

{1} : c_1 {2} : 2_1 

{3, 4} : =_1 {5} : 1_1 

{6} : -_1 {7} : 2_2 

{8, 9} : d_1        {10} : 2_3 

(c) 

 
(d) 

 
(e) 

Figure 1. Processing steps of ME recognition. (a) 

ME with strokes labeled in time order, (b) grouping 

of strokes into symbols, (c) symbol recognition, (d) 

assignment of symbols to levels, (e) hierarchical 

structure of ME 

For symbol recognition, a template matching 

distance method is adopted. First, the pen-direction 

features are quantized using the 8-level Freeman chain 

coding scheme and the dominant points of the stroke 

are identified. The distance between two symbols 

results from the difference of the respective chain 

codes of the variable speed normalization of dominant 

points weighted by the respective length proportions of 

the strokes. The method is explained in detail in [14] 

and showed a recognition rate of 92 % for the top 1 

choice. The output of the symbol recognizer is 

illustrated in Figure 1c. In this notation, the time-order 

labels of the strokes that constitute a symbol are 

included in curly braces (i.e. {3, 4}), they are separated 

from the recognized symbol by the delimiter “:” and for 
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the recognized symbol we use the symbol itself 

followed by an underscore and an order number of the 

symbol in the ME.  For example, in Figure 1c, 2_1 

denote the first occurrence of numeral 2, while 2_2 and 

2_3 denote the second and third occurrences of 

numeral 2. 

 

2.2. Structural analysis 
 

At this stage all symbols have been recognized and 

the task now is to identify the relationships among the 

recognized symbols in order to build a hierarchical 

structure of the symbols that represents the ME. 

The identification of symbol relations is based on 

layout analysis of the ME. A straightforward solution 

to this issue is the introduction of constrains that 

examine the relative spatial relations of the symbols. 

To this end, we exploit symbol’s topological properties 

such as the centroid and the bounding box in order to 

infer the spatial relations among the mathematical 

symbols, to identify the baseline of the ME and classify 

the mathematical symbols into levels with respect to 

the baseline. We connect the symbols of the various 

levels by defining their spatial relations and, finally, 

construct the MathML expression of the ME.  

Let us first define the bounding box and the centroid 

of a symbol as follows: 

Bounding Box. The bounding box of a symbol A is 

the rectangular area that firmly encloses the symbol and 

can be defined by the four coordinates 
1

A
x = min(

A

ix ), 

2

Ax = max(
A

ix ), 1

Ay = min(
A

iy ) and 2

Ay = min(
A

iy ), 

as shown in the following figure :  

 
Figure 2. Bounding box of a symbol 

Centroid. A very common technique to test whether 

a symbol lies within a region or not, is to examine the 

coordinates of its centroid [1].  In processing on-line 

handwritten symbols, the calculation of a symbol’s 

centroid cannot be based on the mean value of pixels’ 

coordinates as in the case of off-line symbols. 

Following the approach suggested in [3], we define the 

x-coordinate of the centroid of a symbol A 

as
2

A
A

c

w
x � , where 2 1

A A Aw x x� � , and the y-

coordinate as
1

A A A

cy y ah� � , where
2 1

A A Ah y y� �  

and 0 1a� � . The value of a depends on the 

category
1
 of the symbol i.e., ascenders (“b”, “d”, etc.), 

descenders (“p”, “q”, etc.) and centered (“+”, “=”, etc.) 

as in [3]. For each of the aforementioned categories, we 

set a equal to 0.2, 0.8 and 0.5, respectively.  

Now, given a symbol we may define spatial 

relations with respect to this symbol by examining the 

other symbols of the ME [3]. In this work, we define 

the following spatial relations with regard to a given 

symbol: (i) rightTop, (ii) right, (iii) rightBottom, (iv) 

below, (v) above and (vi) inside. It is obvious that the 

spatial relations are dependant on the symbol under 

consideration. For example the root sign  can have 

an inside relation, whereas for the symbol �  an inside 

relation cannot be defined. In order to identify the 

spatial relationship of a symbol A with respect to a 

symbol B, we introduce the following boolean 

functions. 

rightTop: Symbol A is in the rightTop region of 

symbol B, (e.g. A is superscript of B) if: 

3
tan tan( , ) tan( )

10 8
A B

� �
� �  

A B

c cy y�  

Where ( , )A B is the angle of the line that passes 

through the centroids of symbols A and B with respect 

to the horizontal line. 

right: Symbol A is in the right region of symbol B, 

in other words A is next to B if: 

1 max( , )A B A B

c cy y a h h� � 	  

A B

c cx x�  

All the symbols that belong to the same level satisfy 

this function.  

rightBottom: Symbol A is in the rightBottom region 

of the symbol B, (e.g. A is subscript of B) if: 

14 16
tan tan( , ) tan( )

8 8
A B

� �
� �  

A B

c cy y�  

  below: Symbol A is in the below region of the 

symbol B (e.g. the denominator of a fraction), if: 

1 1 2

2 2 2

2 1

min( , )

min( , )

A B A B

A B A B

A B

x x a w w

x x a w w

y y

� � 	

� � 	

�

 

                                                           
1 Based on works in the field of typography, each symbol has been 

pre-assigned to a specific category.  
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above: Symbol A is above symbol B (e.g. the 

numerator of a fraction), if: 

1 1 3

2 2 3

1 2

min( , )

min( , )

A B A B

A B A B

A B

x x a w w

x x a w w

y y

� � 	

� � 	




 

inside:  Symbol A is inside symbol B (e.g. a number 

or variable inside of a root) if  

 
1 2

1 2

B A B

c

B A B

c

x x x

y y y

� �

� �

 

Firstly, we detect the main baseline (level_0) of the 

expression. In order to achieve this, we assume that the 

starting symbol of the expression is the first symbol 

written. For example in the ME shown in Figure 1, the 

starting symbol is “c”. Given the start symbol, the 

spatial relation right is checked between the centroid of 

the start symbol and the centroids of the other symbols 

of the mathematical expression. When we find a new 

symbol that belongs to the baseline, we update the list 

of symbols of level_0  and we check the spatial relation 

right of all other symbols of the ME with respect to the 

elements of this list. In this way we identify the 

symbols that define the main baseline (level _0) of the 

ME. We then follow the same procedure iteratively 

starting from the time-ordered symbol that is not 

previously assigned to the baseline. In this fashion we 

define the various levels of the ME, which we order 

them with reference to the main baseline. We 

remunerate the levels using the plus sign for the levels 

above the main baseline (level_0) and we use the minus 

sign for the levels below the main baseline (level_0) 

(see Figure 1d).  

Let us introduce the concept of connectors between the 

symbols of a ME. Given a symbol that belongs to 

level_i a connector is defined with respect to the 

nearest/closest symbol belonging to level_J, 

where i J� , and J>0 if i>0 or J<0 if i<0. Depending 

on the spatial relationship between the two symbols we 

also define the type of the connector as defined above, 

i.e. {rightTop, right, rightBottom, above, below, 

inside}. Note that, the symbols of the main baseline 

(level_0) of the ME, starting from the start symbol, are 

connected with connector type right as shown in Figure 

1e. We proceed with defining the connectors and their 

type for all symbols in each level. In this way all 

possible relations between symbols are defined, and all 

the symbols are assigned to a sub-expression of a 

defined level in the ME. Note that the proposed method 

deals with only up to one level of superscripting or 

subscripting.  

For example, let us consider the ME shown in 

Figure 1. As described above, first we identify level_0  

and then all the other levels. To do so we split into 

levels the symbols of the expression (see Figure 1d). 

For the ME of Figure 1c, the output of the symbol 

recognizer is {c_1, 2_1, =_1, 1_1, -_1, 2_2, d_1, 2_3}. 

Since the start symbol is the letter c_1, we search for 

all the symbols in the expression that have right spatial 

relationship with respect to c_1. The main baseline is 

denoted by level_0 and the following symbols are 

assigned to this level, i.e. level_0={c_1, =_1, -_1, 

d_1}. Then examining the remaining non-assigned 

symbols iteratively by starting from the top in the list of 

the time-order we define the other levels as follows: 

level_+1={1_1}, level_+2={2_1, 2_3} and level_-

1={2_2}. The next step is to search for connectors in 

the defined levels (level_+1, level_+2, level_-1) so as 

to define possible sub-expressions based on symbols 

from the baseline (see Figure 1e). Hence in the 

example of Figure 1d, we find level_+1 symbol {1_1} 

is connected to level_0 symbol {-_1} with the above 

relationship, while level_-1 symbol {2_2} is connected 

to the same symbol with relationship below, level_+2 

symbol {2_1} is connected with relation type rightTop 

with symbol {c_1} of level_0, while level_+2 symbol 

{2_3} is connected with relation type rightTop with the 

symbol {d_1}.  The resulting scheme of the procedure 

is depicted in Figure 1e.  

 

 

Figure 3. MathML structure of the example of 

Figure 1 

We have to point out that the symbol of 

fraction/minus, such as the {_=1} symbol in the 

example ME of Figure 1, is clarified at the structural 

analysis stage and not at the symbol recognition stage. 
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Since the output during the recognition process can be 

either the fraction sign or the minus sign, we check to 

see whether the symbol has relations of type above and 

below. If it does, then the line corresponds to a fraction 

symbol, otherwise it is recognized as the minus symbol.  

Finally, after all levels and relations between the 

symbols of the ME are clarified, a parser is employed 

that takes as input the structure of the example of 

Figure 1e and produces the corresponding mathML 

structure of the expression (see Figure 3). 

 

3. Experimental Results 
 

In order to evaluate the overall system, we used the 

dataset of the Competition on Recognition of Online 

Handwritten Mathematical Expressions Contest 

CROHME 2011[16]. A training dataset consisting of 

921 mathematical expressions and associated ground 

truth, were given to participants by the organizers. The 

test datasets of the contest was partitioned into two 

parts. Part-I contains 181 expressions of 36 distinct 

symbols whereas Part-II includes 348 expressions and 

57 distinct symbols. In particular, the mathematical 

symbols of Part-II, which includes symbols of Part I,. 

are: 10 digits (0-9), 16 Latin letters (a, b, c, d, e, i, k, n, 

x, y, z, A, B, C, F, j), 6 Greek letters (alpha, beta, 

gamma, phi, theta, pi), 4 function words (sin, cos, tan, 

log), 2 structure symbols (root and fraction), 5 operator 

symbols ( +, -, div, times, ±), 5 relational operator 

symbols (=, �, �, <, 
), 2 parenthesis symbols (‘(‘ and 

‘)’), 2 elastic operators (�, �), 3 structural operators 

(lim, � and !) and 2 special symbols (� and dots). 

The ink trace corresponding to each expression is 

stored in an InkML file that contains mainly three 

groups of information: (i) the ink: a sequence of 

individual strokes each one represented by their trace 

co-ordinates; (ii) the symbol level ground truth: the 

segmentation and label information of each symbol of 

the expression; and (iii) the expression level ground 

truth: the MathML structure of the expression. 

The performance evaluation was based on four 

aspects: (i) STrec: stroke-level classification rate, (ii) 

SYMseg: symbol segmentation rate, (iii) SYMrec: 

symbol recognition rate (considering only correctly 

segmented ones) and (iv) EXPrec: expression-level 

recognition rate. The final rating of the systems was 

based on their correct expression recognition 

accuracies. Note that at the expression-level a ME can 

be considered either correct (score equal to one), if the 

respective MathML structure is the same as the ground 

truth, or not (score equal to zero). This means that if 

there is at least one mistake at the lower levels, then 

this mistake is propagated to the expression-level and 

the score for the ME will be zero. In other words, there 

is no score for partly correct MEs.    

We present the evaluation results of the proposed 

method in Tables 1 and 2 for the Part I and Part II 

datasets of CROHME 2011. Four systems, in total, 

participated in the competition (see [16] for description 

of the systems). It must be noted that the proposed 

method is identical with the submitted method IV and 

the difference in the reported scores is due to bugs 

fixing in the implementation of the algorithms. 

The symbol recognition rate for Part-I dataset is 

81.76% and for Part-II dataset is 88.90%, both well 

below the reported performance in [14] of 92% for the 

top-1 choice. By analyzing the mistakes we have 

identified mainly three reasons that explain this 

discrepancy, i.e., the symbol recognition algorithm (i) 

does not handle compounds of letters that represent 

function names, e.g. log, (ii) does not take into account 

the relative location of individual strokes for multiple-

stroke symbols, for example, the not equal sign 

consists of three strokes and is confused with a three-

stroke capital F, and (iii) there are symbol classes that 

are very much alike, e.g. the capital C and the small c 

classes.   

Table 1. Part-I test results 

Systems STrec SYMseg SYMrec EXPrec 

I 53.23 59.06 88.78 4.42 

II 22.39 27.98 82.11 0.55 

III 78.73 88.07 92.22 29.28 

IV 37.41 55.15 81.71 0.00 

proposed 75.90 86.67 81.76 9.94 

 

Table 2. Part-II test results 

Systems STrec SYMseg SYMrec EXPrec 

I 51.58 56.50 91.29 2.59 

II 22.11 28.25 83.76 0.29 

III 78.38 87.82 92.56 19.83 

IV 52.28 78.77 78.67 0.00 

proposed 63.80 79.86 88.90 5.45 

It is also clear from results regarding the recognition 

rates at the level of the ME that the structural analysis 

algorithm is rather simplistic and process properly only 

simple mathematical expressions. As mentioned above, 

the proposed method deals with only up to three levels 

in a ME and this is the reason that the performance for 

Part-II is worse since it includes more complicated 

structures of MEs. In addition, in certain cases, e.g. 

MEs with fractions, the structural analysis fails because 

of the erroneously choice of the starting symbol and in 

some other cases there is failure in the detection of the 

baseline due to the slope in the writing of the ME.  
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4. Conclusions 
 

We have presented a system for the recognition of 

handwritten mathematical expressions. The system has 

been evaluated on the CROHME 2011 dataset and 

showed promising results. We believe that the 

performance of the system can be further improved 

with respect to all measures (STrec, SYMseg, SYMrec 

and EXPrec). Currently the proposed approached is 

being extended to support more complicated structures 

of MEs and add more levels in the structural analysis 

method. Furthermore the detection of the baseline of 

the ME may be improved by adding a slope correction 

technique before the structural analysis step. We also 

intend to employ grammatical rules for the last step of 

building the mathML structure. We plan to submit an 

updated version of the algorithm in the forthcoming 

CROHME 2012. 
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