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Francisco Álvaro, Joan-Andreu Sánchez, José-Miguel Benedı́
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Abstract

Several approaches have been proposed to tackle the

problem of mathematical expression recognition, and

automatic methods for performance evaluation are re-

quired. Mathematical expressions are usually encoded

as a LATEX string or a tree (MathML) for evaluation pur-

pose, but these formats do not enforce uniqueness. Con-

sequently, given that there can be several representa-

tions syntactically different but semantically equivalent,

the automatic performance evaluation of mathematical

expressions can be biased. Given a mathematical ex-

pression recognition tree and its ground-truth tree, the

error is usually computed by comparing them. In this

paper we propose to obtain a new tree, equivalent to

the ground-truth tree, according to the model represen-

tation criteria. Then, we can compute an error by com-

paring the recognized tree with the obtained by using

the model, both with the same bias. Several experiments

were carried out in order to evaluate this approach and

results showed that representation criteria had a signi-

ficative effect in the evaluation results.

1. Introduction

Mathematical notation is an essential part of infor-

mation in science documents and many other fields.

Handling mathematical expressions and introducing

them into computers usually requires special notation

like LATEX. However, lately there has been a great

increasing of pen-based interfaces and tactile devices

that allow users to provide handwritten data as input.

This is a more natural way of introducing mathemati-

cal notation. Introducing the mathematical expressions

in this natural way requires, in turn, developing sys-
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tems that are able to recognize them. Recognition sys-

tems for mathematical expressions depend on the appli-

cation [4]: online recognition systems for handwritten

mathematical expressions, and offline recognition sys-

tems for handwritten or printed mathematical expres-

sions. In online recognition, the system input is usually

a set of strokes that have geometric and temporal infor-

mation. The system can take profit of temporal infor-

mation in online recognition that is not present in of-

fline recognition. This paper will be focused in online

recognition of handwritten mathematical expressions.

The recognition of handwritten mathematical ex-

pressions can be divided into two major steps [4]: sym-

bol recognition and structural analysis. Symbol recog-

nition involves segmentation of the input strokes into

mathematical characters and symbol classification of

these hypotheses. Structural analysis deals with find-

ing out the structure of the expression according to the

symbols arrangement.

Symbol recognition can be evaluated by reporting

both symbol segmentation rate and symbol recogni-

tion rate. However, evaluation and comparison of the

structural analysis in mathematical expression recogni-

tion has hitherto been difficult because: first, most of

the proposals used private data, and second, there has

been a lack of standard performance evaluation mea-

sures [11]. Lately, some public large corpora have been

developed [14] and also new metrics have been pro-

posed [17, 20, 1]. Recent open competitions on math-

ematical expression recognition [15] have brought at-

tention to the problem of automatic evaluation of the

structural analysis.

One of the main problems in mathematical expres-

sion evaluation is that the same expression can be prop-

erly encoded in different ways. Given the recognized

tree (tR) of a mathematical expression and its ground-

truth tree (tG), the error is usually computed by compar-

ing tR with tG. Hence, evaluation metrics based on this

methodology must deal with the problem that tG could

not be unique. A good solution would be to define a

canonical representation for every mathematical expres-
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sion. However, this is not an easy task because many

different people work developing recognition systems

and corpora following different representation criteria,

and there could even be differences due to semantic in-

terpretations.

In this paper, given a certain mathematical expres-

sion and its ground-truth tG, we propose to obtain a

new tree representation (tP ) according to the model.

This tree could be syntactically different but semanti-

cally equivalent to tG. Thereby, we were able to com-

pute an error by comparing the recognition results tR
with tP , both with the same bias, instead of the usual

comparison between tR and tG that can be biased in a

different way.

The remainder of the paper is organized as follows.

A review of related works is given in Section 2. The

online handwritten mathematical expressions recogni-

tion system is described in Section 3. Experiments and

results are presented in Section 4. Finally, conclusions

and future work are discussed in Section 5.

2. Background

Recognition of online handwritten mathematical ex-

pressions can be divided into two major steps [4]: sym-

bol recognition and structural analysis. Symbol recog-

nition comprises, in turn, segmentation of the input

strokes and subsequent symbol classification of these

hypotheses. Structural analysis copes with the problem

of building the structure of the expression according to

the spatial arrangement of the mathematical symbols.

The segmentation problem has been tackled by com-

puting connected components [2], applying the projec-

tion profile cutting method [16] or more sophisticated

techniques [13]. These segmentation hypotheses are

then classified. Several methods have been proposed

to solve this problem, such as HMM [9], Elastic Match-

ing [3] or Support Vector Machines [10]. Furthermore,

some of these proposals combine online and offline in-

formation to perform hybrid classification and improv-

ing recognition results [10].

Several approaches have been studied to deal with

the structural analysis problem, mainly based on

trees [21], graphs [7] or grammars [6]. Definite clause

grammars [5] or graph grammars [12] have been used to

solve this problem. Chou [6] proposed to use Stochastic

Context-Free Grammars (SCFG) in order to recognize

printed mathematical expressions, and several studies

have also used this formalism [19, 2]. In this paper, we

developed an online handwritten mathematical expres-

sion parser based on SCFG and a statistical formulation

based on the Cocke-Younger-Kasami (CYK) algorithm.

The automatic evaluation of mathematical expres-

sion recognition is not an easy task [11] and this fact has

made difficult the definition of widely accepted evalua-

tion measures. Several research studies have introduced

different recognition techniques for mathematical ex-

pression and most of the times each study has used a

different method for evaluation [11]. Thereby, it is dif-

ficult to properly compare different approaches to the

problem of mathematical expression recognition.

In the past, several metrics have been proposed to

report performance of mathematical expression recog-

nition systems. There are metrics such as symbol seg-

mentation rate and symbol recognition rate [18] that can

be computed if the ground-truth is available. However,

these values only take into account the evaluation of a

specific part of the recognition problem. Regarding the

evaluation of the structural analysis of mathematical ex-

pressions, it is often reported the expression recognition

rate [5, 21]. However, it does not provide any informa-

tion about errors; it only determines whether or not an

expression is perfectly recognized, and sometimes it is

manually calculated.

Given that the previous methods only report par-

tial errors, several global measures have also been pre-

sented. Chan and Yeung [5] proposed an integrated

performance measure, which was a simple combination

of symbol recognition and operator recognition rates.

Garain and Chaudhuri [8] presented a global perfor-

mance index that combined symbol and structural er-

rors according to the complexity of the mathematical

expression. Sain et al. [17] presented EMERS, a tree

matching-based performance evaluation measure that

computes an edit distance between two trees. Recently,

Zanibbi et al. [20] have developed a set of performance

metrics based on a bipartite graph representation that

seems to be canonical, but it is not detailed in the article

and no experimentation is reported. Finally, we devel-

oped a measure based on image representation to com-

pare two expressions because this representation solves

many of the ambiguity problems [1].

Despite these global measures are being devel-

oped, nowadays there is no standard metric reported

by most of mathematical expression recognition stud-

ies. Researchers usually report symbol segmentation

rate, symbol recognition rate and expression recog-

nition rate. However, either the expression recogni-

tion rate is calculated manually or the existence of

equivalent representations remains a problem. In past

competition CROHME, this three measures were re-

ported [15]. Every measure was computed automati-

cally, and the expression recognition rate was calculated

by comparing the labeled tree tG and the recognized

tree tR represented in MathML format.

182



Provided that tree representation do not enforce

uniqueness, given a recognized tree tR and its ground-

truth information tG the error is usually computed by

comparing them. However, this comparison is incor-

rectly biased because tR and tG can be structurally dif-

ferent but semantically equivalent. We propose to per-

form a constrained parsing of a mathematical expres-

sion in order to obtain a new tree tP equivalent to tG
but following the model representation criteria. Then,

for the evaluation of a mathematical expression recog-

nition experiment we had 3 sets of trees (Figure 1), and

instead of computing the error between tR and tG, in

this approach we compare tR with tP .

Mathematical

Expression

Recognition

Constrained

Parsing

Handwritten

Mathematical

Expression

tR tP tG

Figure 1. Different trees are obtained from

a mathematical expression: recognized

tree (tR), constrained parsed tree (tP ) and

ground-truth tree (tG).

3. Handwritten mathematical expression

recognition

The handwritten mathematical expression recogni-

tion system used for experimentation is detailed in

the following section. It is based on two-dimensional

stochastic context-free grammars. Thereafter, we de-

scribe how we used the annotated information of a

certain mathematical expression in order to guide this

parser to recognize it.

3.1. Parser description

SCFG are a powerful formalism that has been widely

used for string patterns. Mathematical expressions are

two-dimensional structures, hence, SCFG must be ex-

tended to properly model these type of information.

In this work, we used a two-dimensional extension of

SCFG that has been used in mathematical expression

recognition [6, 19, 2]. This extension basically adds

a spatial relation constraint to every production of the

grammar. Thus, representing the grammar in Chom-

sky normal form, it results in two type of rules: binary

rules with spatial relation constraint (A
r−→ B C) and

terminal rules (A → m ). There are 5 possible spatial

relations r: horizontal, below, subscript, superscript and

inside.

We developed an online handwritten mathematical

expression recognition system based on parsing two-

dimensional SCFG through a CYK algorithm for this

type of grammars. This algorithm performs two steps.

First, the parsing table is initialized by using a hand-

written mathematical symbol classifier and the terminal

productions of the grammar (A → m ). Then, the al-

gorithm builds new subproblems of increasing size ac-

cording to the binary rules of the grammar (A
r−→ B C).

Formally, let G be a two-dimensional SCFG, and let

C be the set of segmentation hypotheses representing

the input expression such that C = { czi | i : 1 . . . C }
where czi represents the segmentation hypothesis lo-

cated at a certain spatial region z. This set is pro-

vided to the parser after a previous step. In this case,

the segmentation hypotheses are obtained as the con-

nected components of the expression. This algorithm

is essentially a dynamic programming method, which

is based on the construction of a parsing table L. Each

element in L is defined according to the following con-

cepts. Value ez[A] is the probability that A is solution of

the mathematical expression contained in the region z.

Analogously, ezl [A] is the probability that A is solution

of the mathematical subexpression contained in the re-

gion z, considering l segmentation hypotheses. Finally,

Ll = {ezl [A]} is a stochastic parse structure where each

element ezl [A] is composed from l segmentation hy-

potheses.

This process is divided into two steps. First, the ini-

tialization begins building the setL1 from the set of seg-

mentation hypotheses defined in C:

L1 = L1 ∪ { ez1[A] } ∀i : 1 . . . C

such that:

ez1[A] = max
m
{p(A→ m) qm(cz)}

where m is a particular mathematical symbol, for which

there is a specific recognizer. Value qm(cz) is the proba-

bility provided by a HMM symbol classifier of this class

m for segmentation hypothesis cz . Next, the parsing

process continues calculating new subproblems of in-

creasing size. Formally, the general case is computed

as

Ll = Ll ∪ { ezl [A] } ∀ l : 2 . . . C
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with:

ezl [A] = max
B,C

max
r

max
k:1...l−1

max
e
zB

k
[B]

e
zC

l−k
[C]

(p(A
r−→ B C) ezBk [B] ezCl−k[C] pr(zB , zC))

where a new subproblem ezl [A] is created from two

subproblems of minor size ezBk [B] and ezCl−k[C] taking

into account both the syntactic constraints, defined by

p(A
r−→ B C), and the following constraints: first, r rep-

resents the spatial relation, and second, pr(zB , zC) is

the probability that both regions were arranged accord-

ing to the spatial relation r. We modeled the probability

pr(zB , zC) with a SVM classifier by representing the

relation between regions zB and zC as a numeric vector

composed by several geometric features extracted from

relative positions of these regions.

3.2. Constrained parsing

Using the previously detailed handwritten mathe-

matical expression parser and an annotated expression,

we wanted to constrain the parsing process to recognize

it perfectly. There were two parts of the recognition

process to take into account. First, symbol segmenta-

tion and recognition is completely solved provided that

given an expression, its annotated information identi-

fies each symbol (class m) and the strokes that compose

them (cz). Thus, using this information the parsing ta-

ble was initialized such that for each symbol in C the

probability of belonging to its labeled class was set to

one (qm(cz) = 1.0).

On the other hand, the structural analysis is not

straightforward due to that several trees can represent

the same expression. Given a handwritten mathemati-

cal expression and its ground-truth information, we had

available a set of spatial relations between subsets of

symbols of the expression. The MathBrush corpus [14]

has these relations explicitly labeled, but the parser

could split the expression in a different way producing

a different tree. In order to guide the parser to recognize

a certain expression, we provided it with the list of an-

notated spatial relations. Hence, when two hypotheses

B and C were combined during the parsing process,

the probability that they were arranged according to a

spatial relation r is set to one (pr(zB , zC) = 1.0) if

that relation is labeled in the reference. As it is likely

that the model builds a different tree of a mathematical

expression compared to the reference tree, we provided

the parser with more spatial relations than the annotated

ones. These extra relations between subsets of symbols

were obtained thanks to transitive properties of spatial

relations.

4. Experiments

In this section we used the MathBrush corpus [14]

which contains 4, 654 annotated online handwritten

mathematical expressions written by 20 different writ-

ers. The number of mathematical symbols is 26K and

they are distributed in 100 different classes. In order to

compare the expression trees we used EMERS [17], a

well-defined tree edit distance evaluation measure. This

metric is not a normalized distance, but it calculates the

set of edit operations to transform a tree into another

such that if both trees are identical EMERS is equal to

zero.

Several experiments were performed to validate our

proposal by using trees obtained through different

sources (Figure 1). First, a constrained parsing of all the

expressions in the database was performed to dispose

the ground-truth represented following the model crite-

ria (tP ). Then, a handwritten mathematical expression

recognition experiment was carried out and our evalua-

tion approach was analyzed by using these results (tR)

and both references (tP and tG).

4.1. Ground-truth constrained parsing

For every labeled expression of the MathBrush cor-

pus, we obtained a new reference tree tP as explained

in Section 3.2 and we wanted to know if these rec-

ognized representations were equivalent to tG. For

that reason, we compared the recognized LATEX expres-

sion with its corresponding annotated LATEX by using

IMEGE [1]. We performed the comparison (tP , tG) by

using IMEGE, an image-based measure error such that

if it was equal to zero we were sure that the expres-

sion was perfectly recognized. Otherwise, we manually

checked the remaining constrained parsed output. As a

result, we obtained that 99.05% of the corpus was prop-

erly parsed.

The 0.95% remaining expressions were discarded

and the constrained parsing errors had different causes.

Some expressions were not perfectly recognized be-

cause the model could not account for it due to the spa-

tial search space restriction during the parsing process.

For example, in Figure 2a, the subexpressions “−j” and

“∞]” are not parsed properly because when performing

an horizontal concatenation of two regions we require

that the second one is after the first in left-to-right order.

Other errors were caused because the model produced

an expression structure such that the spatial relation in-

formation provided was not enough to guide the parser,

hence, some decisions relied on the model which failed.

For example, in Figure 2b, the relation between S and

i was not provided to the parser and the probability of
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the spatial relation classifier is higher for subscript re-

lation. Finally, a few expressions had annotation errors.

We also noticed that the constrained parsing is useful to

check if a model is able to account for a given set of

expressions.

a)

√
9 + j −zw∞

b)

SiAσ

Figure 2. Example of constrained parsing

errors.

After discarding the wrong parsed expressions, we

compared the trees generated by the model with the la-

beled trees of the corpus (tP , tG) using EMERS. Thus,

we observed that 62% of the expression trees were dif-

ferent. Most of the differences in the representation

were due to horizontal relations, because an horizontal

concatenation of symbols can be split in several ways

(Figure 3a). The model produced binary trees because

the SCFG used was in Chomsky Normal Form, whereas

the reference had tree nodes with more than two chil-

dren. Moreover, other differences were caused by cod-

ification criteria (Figure 3b). Therefore, results showed

that the structural analysis of the expression in the con-

strained parsing process is not straightforward and that

tree representation criteria will affect the evaluation re-

sults.

4.2. Mathematical expression evaluation

We used the handwritten mathematical expression

recognition system described in Section 3.1 to perform

a simple experiment over the MathBrush corpus. We

randomly split the database into a training set and a test

set. The training set was composed of 70% of the sam-

ples (3227 expressions) and the remaining 30% were

selected as test set (1383 expressions). The expressions

in the training set were used in order to train the HMM

symbol recognition classifier and the SVM spatial rela-

tions classifier.

a)

Hor

[ Sub

x i

]

Hor

[ Hor

Sub

x i

]

b)

\sum_{n = 1}ˆN ( -1 )ˆn \sin ( n x )

\sum_{n = 1}ˆN {( - 1 )}ˆn \sin ( n x )

Figure 3. Examples of differences in tree

representation between tP and tG.

For each recognized expression, we measured the

results by using EMERS regarding both the ground-

truth tree (tR, tG) and the tree obtained through con-

strained parsing (tR, tP ). Table 1 shows the aver-

age results of the mathematical expression experiment,

where reported measures are: symbol segmentation rate

(SYMseg), symbol recognition rate for well segmented

symbols (SYMrec), expression recognition rate (EXPrec)

and EMERS for both scenarios. Expressions perfectly

recognized were those whose EMERS value was equal

to zero.

Table 1. Mathematical expression recog-

nition results regarding two different ref-

erences.

SYMseg SYMrec EXPrec EMERS

(tR, tG) 84.86% 79.82%
17.71% 4.06

(tR, tP ) 25.31% 3.43

The segmentation recognition rate was about 85%
and symbol recognition rate was about 80%. Sym-

bol recognition could be improved, but we performed

a simple writer independent experiment and this work

is more interested in the structural analysis evaluation.

Results show that the EMERS average value regarding

the labeled tree information is higher than the value ob-

tained regarding the tree obtained using the model, as it

was expected. The representation criteria had a signi-
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ficative effect in the expression recognition rate, where

this value differed in 7.60% depending on the reference.

Thus, it can be seen that the comparison between tR and

tG is biased in a very different way.

5. Conclusions

In this work, we proposed a method to obtain

an unbiased evaluation of a recognition experiment

over an online handwritten mathematical expressions

database [14]. First, we used a mathematical expression

recognition parser based on two-dimensional SCFG to

obtain a new reference (tP ) of the corpus through con-

strained parsing. Thereby, we obtained the represen-

tation produced by the model for each expression in

the database. Afterwards, we performed a mathemat-

ical expression recognition experiment and the results

were evaluated comparing the recognized tree (tR) ver-

sus two different ground-truth: the corpus labeled tree

(tG) and the tree obtained from the model (tP ).

Finally, we conclude that representation criteria has a

significative effect in the evaluation of mathematical ex-

pression recognition if trees are compared directly, and

that the comparison between tR and tG is biased. Sev-

eral experiments were performed to measure this influ-

ence and we saw that 62% of the expression trees of

the database were different than those obtained by the

model (tP ,tG). Furthermore, in a recognition experi-

ment, the rate of expressions perfectly recognized var-

ied by 7.60% depending on the reference. Constrained

parsing is also useful to check if a model is able to ac-

count for a certain set of expressions.

For future work we are interested in applications

of constrained parsing for providing automatic ground-

truth information. Also it would be interesting the ap-

plication of constrained parsing to printed mathematical

expressions in order to be able to do post-edition or in-

teraction of recognition results.
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