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Abstract—This paper addresses the problem of reinforcing
the ability of k-NN classification of handwritten characters via
distortion-tolerant template matching techniques with a limited
quantity of data. We make a comparison of three kinds of
matching techniques: the conventional simple correlation, the
tangent distance, and the GAT (Global Affine Transformation)
correlation. The k-NN classification method is straightforward
and powerful, however, is very time-consuming. Hence, to re-
duce the computational cost of matching in k-NN classification
we propose to accelerate the GAT correlation technique by
reformulating its computational model and adopting efficient
lookup tables. Recognition experiments made on the handwrit-
ten numerical database IPTP CDROM1B show that matching
techniques of the simple correlation, the tangent distance, and
the accelerated GAT correlation achieve recognition rates of
97.07%, 97.50%, and 98.70%, respectively. Also, the compu-
tation time ratios of the tangent distance and the accelerated
GAT correlation to the simple correlation are 26.3 and 36.5 to
1.0, respectively.

Keywords-affine-invariant template matching; k-NN classifi-
cation; normalized cross-correlation; character recognition;

I. INTRODUCTION

Benchmarking of state-of-the-art techniques in handwrit-

ten digit recognition has demonstrated that statistical pattern

recognition techniques using a large amount of training data

are most successful [1]. However, we have constant need of

powerful matching algorithms in problems where advanced

statistical modeling for standard classification methods is not

possible due to a limited quantity of data.

To resolve this problem, we have two major approaches:

distortion-tolerant template matching and k-NN (k-Nearest-

Neighbor) classification. Of course, these two approaches

can be combined effectively.

Regarding the first approach several promising techniques

based on deformable models have been proposed. Revow et

al. [2] and Jain et al. [3] reinforced their deformable models

via probabilistic viewpoints. Also, Ronee et al. [4] enriched

DP-based 2D warping. Especially, Bunke et al. [5] showed

that most of handwriting distortion can be expressed by

affine transformation and proposed the perturbation method

based on affine transformation. The tangent distance by

Simard et al. [6] and GAT correlation by Wakahara et

al. [7] aimed to absorb affine transformation in a straight-

forward manner. Moreover, Wakahara et al. [8] extended

GAT correlation to PAT (Partial Affine Transformation)

correlation to deal with nonlinear distortion. By the way,

in online handwriting recognition, stroke-based affine trans-

formation [9], affine moments invariants [10], and affine

integral invariants [11] have been proposed.

Regarding the second approach k-NN classifiers are

memory-based, and require no model to be fit [12]. In

particular, by incorporating invariances under certain natural

transformations into the metric used to measure the distances

between objects, the k-NN classifier can serve as a high-

accuracy distortion-tolerant template matching technique [6].

However, one major drawback of k-NN classifiers in gen-

eral is the computational load. Distortion-tolerant template

matching techniques are also very time-consuming.

In this paper, we propose a new, powerful combination of

accelerated distortion-tolerant template matching and k-NN

classification. The key contribution is drastic reduction of

the computational cost of the GAT correlation technique.

By reformulating the computational model of the GAT

correlation based on separation of variables, we generate 8-

directional GAT correlation templates for calculating optimal

affine parameters efficiently. Also, adopting lookup tables

helps to further reduce the computational load.

Experimental results made on the handwritten numeral

database IPTP CDROM1B show that k-NN classification

via the accelerated GAT correlation achieves a much higher

recognition accuracy than those obtained by k-NN classifiers

using the conventional simple correlation and the tangent

distance. Furthermore, the computational cost of the GAT

correlation has been reduced to a roughly comparable level

with that of the tangent distance even though the GAT cor-

relation technique involves an iterative optimization process.

II. SIMPLE CORRELATION AND THE TANGENT DISTANCE

We adopt normalized cross-correlation as a matching

measure or metric in k-NN classification.

First, we denote an input image and a template by f(x)
and g(x), x ∈ D, respectively. D specifies the common

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.225

143



domain of the input image and the template.

Then, according to the procedure of definite canonicaliza-

tion [13] with robustness against image blurring and additive

random noise, both the input image and the template are

linearly transformed as follows.

(f, 1) = (g, 1) = 0, ∥ f ∥ = ∥ g ∥ = 1, (1)

where

(f, g) ≡

∫∫

D

f(x)g(x)dx, ∥ f ∥ ≡
√

(f, f).

As a result, a normalized cross-correlation value calcu-

lated between the input image and the template is simply

represented by an inner product (f, g). We call this value a

simple correlation value, Csimple(f, g), given by

Csimple(f, g) = (f, g). (2)

On the other hand, as is well known, the tangent dis-

tance [6] gives an invariant metric with respect to a set

of local transformations which do not affect the identity

of the image. Concretely, seven such image transformations

are identified: horizontal and vertical translations, rotation,

scaling, shearing, squeezing, and line thickening or thin-

ning. Then, we generate two sets of seven tangent vectors,
{

vfi (x)
}

and {vgi (x)} (i = 1, . . . , 7), for the input image

and the template, respectively. Finally, we define the tangent

distance between the input image and the template by

distTD(f, g) = min
�f ,�g

∥

∥f̃ − g̃
∥

∥

2

,

f̃(x) = f(x) +
∑

i

�f
i v

f
i (x),

g̃(x) = g(x) +
∑

i

�g
i v

g
i (x), (3)

where optimal coefficients, �
f and �

g , are easily deter-

mined according to a linear least squares problem.

Now, we newly define a tangent distance correlation value,

CTD(f, g), by

CTD(f, g) =

∫∫

D

f̃(x)g̃(x)dx = (f̃ , g̃), (4)

where both f̃(x) and g̃(x) are definitely canonicalized

according to (1) using optimal coefficients, �f and �
g .

We use these two kinds of correlation values, Csimple of

(2) and CTD of (4), in k-NN classification of handwritten

characters in Section V.

III. ORIGINAL COMPUTATIONAL MODEL OF GAT

CORRELATION

First of all, affine transformation in the 2D image plane

is defined by

x
′ = Ax+ b, (5)

or
(

x′

y′

)

=

(

a00 a01
a10 a11

)(

x
y

)

+

(

b0
b1

)

. (6)

Accordingly, we have the affine-transformed input image,

f∗(x), given by

f∗(x) =
1

∣A∣
f(A−1(x− b)), (7)

where ∣A∣ is the determinant of the matrix A.

Then, we define a GAT correlation value, CGAT (f, g), by

CGAT (f, g) = max
A,b

JGAT (A, b),

JGAT (A, b) =

∫∫

D

f∗(x)g(x)dx

=

∫∫

D

1

∣A∣
f(A−1(x− b))g(x)dx

=

∫∫

D

f(z)g(Az + b)dz. (8)

The key idea of the original GAT computational model [7]

is to introduce a Gaussian kernel, G(x), so that a new

objective function, J̃GAT (A, b), is differentiable with respect

to A and b as follows.

J̃GAT (A, b) =

∫∫

D

∫∫

D

G(Ax1 + b− x2)×

� (∇f(x1),∇g(x2)) f(x1)g(x2)dx1dx2,

G(x) = exp

(

−
∥x∥

2

2D2

)

, (9)

where gradients ∇f(x) and ∇g(x) are quantized into eight

directions with the �/4 interval, and take integers ranging

from zero to eight; the value of zero corresponds to no

gradient. Also, the �(i, j) is a kind of the Kronecker delta

given by

�(i, j) =

{

1, for i = j ∕= 0
0. for i ∕= j or i = 0 or j = 0

The value of D of (9) that controls the spread of the

Gaussian kernel is adaptively determined as a function of the

disparity of the input image and the template with constraints

on their gradients as follows.

D =
1

2
Av
x1

{

min
{x2∣∇f(x1)=∇g(x2) ∕=0}

∥x1 − x2∥

}

+
1

2
Av
x2

{

min
{x1∣∇f(x1)=∇g(x2) ∕=0}

∥x1 − x2∥

}

, (10)
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where D is the average minimum distance between two

points, one in f and the other in g, with the same gradient

direction.

By using the following relation:

∥Ax1 + b− x2∥
2

= ∥Ax1∥
2
+ ∥b∥

2
+ ∥x2∥

2

+ 2⟨Ax1, b⟩ − 2⟨Ax1,x2⟩ − 2⟨b,x2⟩

= tr
[

Ax1x
T
1 A

T + 2bxT
1 A

T − 2x2x
T
1 A

T
]

+ ∥b∥
2
+ ∥x2∥

2
− 2⟨b,x2⟩,

we obtain the derivatives with respect to A and b as

1

2

∂ ∥Ax1 + b− x2∥
2

∂AT
= Ax1x

T
1 + bx

T
1 − x2x

T
1 ,

1

2

∂ ∥Ax1 + b− x2∥
2

∂b
= b+Ax1 − x2. (11)

Now, by setting the derivatives of J̃GAT (A, b) of (9) with

respect to A and b equal to zero, we obtain a set of nonlinear

equations given by

0 = −
1

D2

∫∫

D

∫∫

D

∂ ∥Ax1 + b− x2∥
2

∂AT

G(Ax1 + b− x2)� (∇f(x1),∇g(x2))

f(x1)g(x2)dx1dx2,

0 = −
1

D2

∫∫

D

∫∫

D

∂ ∥Ax1 + b− x2∥
2

∂b

G(Ax1 + b− x2)� (∇f(x1),∇g(x2))

f(x1)g(x2)dx1dx2. (12)

Here, in order to remove the nonlinearity from these

equations we adopt the 0th order approximation that sets

A = I and b = 0 in the Gaussian kernel of (12).

As a result, we have a set of simultaneous linear equations

given by

0 = Ax1x
T
1 + bx1

T − x2x
T
1 ,

0 = b1 +Ax1 − x2, (13)

where

1 =

∫∫

D

∫∫

D

G(x1 − x2)×

� (∇f(x1),∇g(x2)) f(x1)g(x2)dx1dx2,

x1 =

∫∫

D

∫∫

D

x1G(x1 − x2)×

� (∇f(x1),∇g(x2)) f(x1)g(x2)dx1dx2,

x2 =

∫∫

D

∫∫

D

x2G(x1 − x2)×

� (∇f(x1),∇g(x2)) f(x1)g(x2)dx1dx2,

x1x
T
1 =

∫∫

D

∫∫

D

x1x
T
1 G(x1 − x2)×

� (∇f(x1),∇g(x2)) f(x1)g(x2)dx1dx2,

x2x
T
1 =

∫∫

D

∫∫

D

x2x
T
1 G(x1 − x2)×

� (∇f(x1),∇g(x2)) f(x1)g(x2)dx1dx2. (14)

Finally, we solve these simultaneous linear equations of

(13) and obtain a sub-optimal solution of A and b as follows.

A =

(

x2x
T
1 −

x2 x1
T

1

)(

x1x
T
1 −

x1 x1
T

1

)−1

,

b = −
Ax1

1
+

x2

1
. (15)

In order to obtain the true optimal solution of (8), we use

the successive iteration method [14] by iterative application

of sub-optimal affine parameters of (15) to the input image

until the value of JGAT (A, b) of (8) arrives at a maximum.

IV. ACCELERATED COMPUTATIONAL MODEL OF GAT

CORRELATION

The key ideas to accelerate the original computational

model of GAT correlation are twofold.

The first one is to generate 8-directional GAT correlation

templates in advance by means of separation of variables in

the original computational model. This drastically reduces

the computation time to calculate a set of components of (14)

necessary for determining sub-optimal affine parameters.

The second one is to generate lookup tables of distances

from each point to its nearest point with the same gradient

direction. These lookup tables are used to replace a runtime

computation of D of (9) with a simpler array indexing

operation.

A. Generation of GAT correlation templates

We reformulate the original computational model of GAT

correlation described in Section III via separation of vari-

ables to generate 8-directional GAT correlation templates.

First, by using the notation:

x1 =

(

x1

y1

)

, x2 =

(

x2

y2

)

,

G1(x1 − x2) = exp

(

−
∣x1 − x2∣

2

2D2

)

,

we can easily verify that the Gaussian kernel of (9) has the

following property given by

G(x1 − x2) = G1(x1 − x2)G1(y1 − y2), (16)

which provides a basis for separation of variables in the

accelerated GAT computational model.
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Then, by making full use of the above property of the

Gaussian kernel, we define a set of functions, {ℎ0(y1, x2, s)}
and {H0(x1, s)} (s = 0, . . . , 8), by

ℎ0(y1, x2, s) =

∫

G1(y1 − y2)×

� (s,∇g(x2)) g(x2, y2)dy2, (17)

and

H0(x1, s) =

∫∫

D

G(x1 − x2)×

� (s,∇g(x2)) g(x2)dx2

=

∫

G1(x1 − x2)ℎ0(y1, x2, s)dx2, (18)

respectively, where s specifies the gradient direction and

takes an integer value ranging from zero to eight.

Similarly, we define another set of functions,

{ℎ1(y1, x2, s)} and {H1(x1, s)} (s = 0, . . . , 8), by

ℎ1(y1, x2, s) =

∫

y2G1(y1 − y2)×

� (s,∇g(x2)) g(x2, y2)dy2, (19)

and

H1(x1, s) =

∫∫

D

x2G(x1 − x2)×

� (s,∇g(x2)) g(x2)dx2

=

( ∫

x1G1(x1 − x2)ℎ0(y1, x2, s)dx2
∫

G1(x1 − x2)ℎ1(y1, x2, s)dx2

)

. (20)

We call these functions of (17), (18), (19), and (20) 8-

directional GAT correlation templates. It is clear that we

can generate and store these templates in advance for each

of templates to be excluded from a runtime computation.

Finally, by using these templates, we can calculate a set

of components of (14) very efficiently by

1 =

∫∫

D

H0(x1,∇f(x1))f(x1)dx1,

x1 =

∫∫

D

x1H0(x1,∇f(x1))f(x1)dx1,

x2 =

∫∫

D

H1(x1,∇f(x1))f(x1)dx1,

x1x
T
1 =

∫∫

D

x1x
T
1 H0(x1,∇f(x1))f(x1)dx1,

x2x
T
1 =

∫∫

D

H1(x1,∇f(x1))x
T
1 f(x1)dx1. (21)

B. Generation of lookup tables

It is very time-consuming to calculate the value of D of

(10) based on a naive, raster-scan-based search for nearest-

neighbor points, one in f and the other in g, with the same

gradient direction.

To reduce the above-mentioned computational cost, we

generate two kinds of lookup tables.

The first one is a lookup table of nearest-neighbor inter-

point distances with respect to each gradient direction at ev-

ery point, x2, in the template denoted by {dist(x2, s)} (s =
1, . . . , 8).

When we know the gradient direction, ∇f(x1), of the

input image, we can immediately pick up a value of

dist(x1,∇f(x1)) as the nearest-neighbor interpoint dis-

tance to be determined.

However, we don’t provide the input image with this

type of lookup table because generation of the lookup table

requires more time on the contrary.

Hence, we generate the second type of lookup table that

stores nearby points’ coordinates and corresponding dis-

tances sorted in the increasing order of interpoint distances

for every point in the image plane. This lookup table realizes

an efficient, fast search for the nearest-neighbor point in the

input image from each point in the template with the same

gradient direction.

V. EXPERIMENTAL RESULTS

We use the handwritten numeral database IPTP

CDROM1B [15]. This database contains binary images of

handwritten digits divided into two groups of 17,985 samples

for training and 17,916 samples for test. Actually, the highest

recognition rate ever reported for this database is 99.49%

obtained via sophisticated discriminant functions in high-

dimensional feature space [16].

First, position and size normalization by moments [17] is

applied to each binary image so that the center of gravity

of black pixels is located at the center of the image and

the average distance of black pixels from the center of the

image is set at the predetermined value of � (= 6.0). Then,

we transform all of binary images into grayscale images by

Gaussian filtering and set the image size at 24× 16 pixels.

In recognition experiments, we make a comparative study

of k-NN classification of a total of 17,916 test samples using

three kinds of matching measures: the conventional simple

correlation of (2), the tangent distance correlation of (4),

and the GAT correlation of (8). Here, templates are selected

from a total of 17,985 training samples.

We have two major concerns: (1) relations between

recognition rates of k-NN classification using each of three

matching measures and the number of templates, and (2)

the comparison of the computational cost among those three

matching measures.

A. Recognition accuracy of k-NN classification

First, we investigated the recognition accuracy of k-

NN classification using three kinds of competing matching

measures as a function of the number of templates being

sampled at random.
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Figure 1. Relations between recognition rates via simple, tangent distance,
and GAT correlations and the number of templates per digit category.

Figure 2. Recognition rates of each digit category using all training
samples as templates in k-NN classification.

Figure 1 shows relations between recognition rates of k-

NN classification via simple, tangent distance, and GAT

correlations and the number of templates per digit category.

From Fig. 1, it is clear that the GAT correlation method

is far superior in recognition accuracy to both the simple

correlation and the tangent distance methods even when

there are only a small number of templates.

From these results, we can say that k-NN classification

of handwritten characters via the GAT correlation method

is very powerful when we have only a limited quantity of

training data.

Figure 2 shows recognition rates of each digit category

using a total of 17,985 training samples as templates.

From Fig. 2, it is found that the accuracy of k-NN clas-

sification of handwritten characters via the GAT correlation

method with a large number of templates can be comparable

to that of the sophisticated statistical technique [16].

B. Computational cost

Figure 3 shows relations between processing times of k-

NN classification via simple, tangent distance, and GAT

correlations and the number of templates per digit category.

Figure 3. Relations between processing times via simple, tangent distance,
and GAT correlations and the number of templates per digit category.

From Fig. 3, it is found that the average k-NN classifica-

tion time per character via the accelerated GAT correlation

using a total of 17,985 training samples as templates was

15.2s on a 2.67GHz Intel Xeon X5650 processor.

Table I shows the computation time ratios of the simple

correlation, the tangent distance, and the GAT correlation in

k-NN classification.

Table I
COMPUTATION TIME RATIOS OF THE SIMPLE CORRELATION, THE

TANGENT DISTANCE, AND THE GAT CORRELATION.

Matching Computation time

measure ratio

Original GAT correlation 582.2
Accelerated GAT correlation 36.5
Tangent distance 26.3
Simple correlation 1.00

From Table I, it is first found that the computation time

of the accelerated GAT correlation was greatly reduced to

around six percent of that of the original GAT correlation.

It is also found that the computational load of the acceler-

ated GAT correlation is roughly comparable to that of the

tangent distance while the former far surpasses the latter in

recognition accuracy.

However, it is clear that the present classification time per

character is still too long. Recently, engineers and scientists

have increasingly studied the use of GPUs for non-graphical

calculations because most of these computations involve

matrix and vector operations. Here, we can point out that the
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accelerated GAT correlation basically consists of computa-

tions of inner products between vectors with weights. From

this viewpoint, exploiting current state of the art processing

schemes for implementation of the proposed method would

make the relevance and viability of our approach stronger.

VI. CONCLUSION

This paper proposed a promising technique of k-NN

classification of handwritten characters using the accelerated

GAT correlation as a distortion-tolerant template matching

technique.

Recognition experiments made on the handwritten nu-

meral database IPTP CDROM1B showed that the proposed

method achieved a much higher recognition rate of 98.70%

than those of 97.07% and 97.50% obtained by the conven-

tional simple correlation and the tangent distance, respec-

tively. The superiority of the GAT correlation in recognition

accuracy to the other two matching measures was held

when there are only a limited number of templates in k-NN

classification. Also, the computational cost of the accelerated

GAT correlation was around six percent of that of the

original GAT correlation.

Future work is to improve the recognition accuracy of k-

NN classification of handwritten characters by combining

the accelerated GAT correlation with PAT correlation [8] so

as to absorb nonlinear distortion. Also, use of cutting-edge

processing schemes such as GPUs to reduce the processing

time of the proposed method is most interesting.
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