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Abstract—We present a statistical hypothesis testing 

method for handwritten word segmentation algorithms. 

Our proposed method can be used along with any word 

segmentation algorithm in order to detect over-

segmented or under-segmented errors or to adapt the 

word segmentation algorithm to new data in an 

unsupervised manner. The main idea behind the 

proposed approach is to learn the geometrical 

distribution of words within a sentence using a Markov 

chain or a Hidden Markov Model (HMM). In the former, 

we assume all the necessary information is observable, 

where in the latter, we assume the minimum observable 

variables are the bounding boxes of the words, and the 

hidden variables are the part of speech information. Our 

experimental results on a benchmark database show that 

not only we can achieve a lower over-segmentation and 

under-segmentation error rate, but also a higher correct 

segmentation rate as a result of the proposed hypothesis 

testing.  

 

 

I.     INTRODUCTION 

Words are the building blocks of text. In document 

understanding applications, we often need to divide a 

document into its constituent lines, and further to 

divide each line into its constituent words. Due to its 

practical importance, word segmentation has been an 

ongoing topic of research in the document analysis 

community and there are numerous methods that have 

been proposed over the last decades to address this 

problem [1]. Nevertheless, the segmentation of words 

in unconstrained handwritten documents remains a 

challenging task mainly because the boundaries 

between words are not well-defined without knowing 

their meanings. Inter-word-spacing is sometimes wider 

than the intra-word-spacing and thus it is not always 

possible to perfectly segment the document at the 

word level using geometrical information only.   

 

 

 
(a) Hypothesis #1 

 
(b) Hypothesis #2 

 
(c) Hypothesis #3 

Figure 1.   Three word segmentation hypotheses for a text 
line represented as lists of bounding boxes.

 

Considering the fact that both the segmentation and 

the recognition information are unknown for a given 

document image, there are two major approaches to 

address the word segmentation problem: implicit and 

explicit. In the former, the segmentation and 

recognition are done simultaneously; in other words, 

the word boundaries are found as a by-product of a 

sentence recognition algorithm [2, 3]. In the latter, the 

segmentation is done as an independent step before 

recognition [4-6].  

No matter what type of word segmentation 

algorithm is used, the output of the algorithm can be 

thought of as a list of rectangles corresponding to the 

bounding boxes of the words in the input text line. The 

main motivation behind this work is to find a 

statistical testing method in order to detect unlikely 
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segmentation hypotheses given that the minimum 

information available to the testing method is the 

coordinates of the bounding boxes. An example is 

shown in Fig. 1. We see three word segmentation 

hypotheses for an input text line. Given that the 

rectangles correspond to words, we can tell that 

Hypothesis #1 is more likely to be the correct 

segmentation compared to Hypotheses #2 and #3. 

Hypothesis #2 is most likely over-segmented because 

it is rare that a long sentence is composed of many 

consecutive short words. Hypothesis #3 is most likely 

under-segmented because it is rare that a long sentence 

is composed of only two long words. The idea is to 

learn a statistical model from a set of correctly 

segmented lines so that it assigns higher probabilities 

to more likely hypotheses, and lower probabilities to 

highly over-segmented and highly under-segmented 

hypotheses. To the best of our knowledge, this work is 

the first to propose a trainable word segmentation 

hypothesis testing method for handwritten documents. 

In the rest of this paper, firstly, we will talk about 

the choice of the model for the distribution of words, 

and present the training of the proposed models based 

on a standard database of English sentences. Secondly, 

we will show how to detect over-segmentation and 

under-segmentation errors and how to adapt the free 

parameters of a word segmentation algorithm to new 

data using the trained models. Finally, we will present 

our experimental results.  

 

II.     MODELING OF WORDS DISTRIBUTION 

We consider the word segmentation process as a 

discrete-time stochastic phenomenon that satisfies the 

Markov property. The Markov property obviously 

holds because the unidirectional property of text lines 

implies that the conditional probability distribution of 

future words only depends on the current word, and 

not the preceding or future words. Therefore, 

depending on whether we assume all variables in the 

problem are observable or not, there are two general 

strategies for the modeling of the distribution of words 

in a text line: observed-variable approach and latent-

variable approach. In the former, we model the words 

distribution based on a Markov chain; while in the 

latter, we model the words distribution using a Hidden 

Markov Model (HMM).  

 

Assuming that the minimum information available 

to the testing method is the bounding boxes of the 

words, there are a number of other variables in this 

problem that are considered as hidden (i.e. they are not 

directly observable). The HMM framework allows us 

to somehow infer these hidden variables from the 

observable variables. We may consider as hidden 

variables the meanings or shapes of the words, the 

context of the writing, the author’s writing style, 

number of letters in the words, part of speech 

information etc. Out of these hidden variables, it is 

quite meaningful to associate the number of letters in 

the words and the part of speech information with the 

observable variables (i.e. the bounding boxes in the 

simplest case). The reason we are interested in the part 

of speech information is mainly prepositions (on, in, 

to, by, for, with, at, of, from, as, …) and pronouns (I, 

me, we, us, you, him, it, …) that are typically short 

length words. Therefore, by inferring the part of 

speech information from the observable variables, we 

want to enhance the distribution model so that it can, 

to some extent, distinguish sequences of short length 

prepositions or pronouns from sequences of over-

segmented words. 

In the following, first we will present the Markov 

chain and then the hidden Markov model for the 

distribution of words.  

 

A.    Markov Chain 

A Markov chain is the simplest Markov model 

where the system states are fully observable. We 

represent a Markov chain by a pair ! = (S, A) where S 

denotes the state space, and A denotes the transition 

matrix that defines the probability of going from any 

state to any other state of the system. The transition 

matrix defines the random process that is governed by 

the model, or equivalently, the distribution of state 

sequences that are generated by the model. 

For the modeling of the distribution of words using 

Markov chains, first we have to identify the state 

space. Depending on the type of the word 

segmentation algorithm (implicit or explicit), there are 

two ways to define the state space, either based on: 1) 

the bounding box information; or 2) the transcription 

information. These two state spaces lead to two 

Markov chain models.  

 

 

 
 

Figure 2.    Markov chain model for distribution of words. 
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In the Markov chain model based on the bounding 

box information, we discretize the words bounding 

boxes into a number of non-overlapping equi-length 

frames (i.e. windows), and represent each frame with a 

separate state. Let HL = [ b1, b2, …, bn ] denote a word 

segmentation hypothesis for a text line L, where bi’s 

represent the bounding boxes of the words hypotheses. 

We define the average height of the line 

avg(height(HL)) as the average of the heights of the 

bounding boxes in HL. Then, we define the number of 

frames for a word bounding box bi as the closest 

integer to the ratio of the length of bi to the average 

height of the line. 

In the Markov chain model based on the 

transcription information, we represent each letter in a 

word with a separate state; therefore, we assume that 

the number of letters in a word image is an observable 

variable for the model. If the transcription information 

for the test data is not available, we have to estimate 

the number of letters from the word image. For this 

purpose, we use a regression neural network that is 

trained based on the Average Number of Transition 

(ANT) features [7]. 

We denote the set of states by S = { s1, s2, … sN }, 

where si is the state corresponding to words with i 

frames or i letters. In both models, we limit the number 

of states to a predefined maximum Nmax. Therefore, any 

word with more than Nmax frames/letters is represented 

by sNmax. The Markov chain model for distribution of 

words is shown as a directed weighted graph in Fig. 2, 

where the nodes represent the states and the edges 

represent the transition probabilities between the states. 

For the training of the Markov chain, that is to find 

the transition probabilities, we use the standard IAM 

database [8] for both the bounding box-based and the 

transcription-based models. The ground-truth data of 

the IAM database is available at both the bounding box 

level and the transcription level for words and lines. In 

our experiments, we set Nmax to 15.  

 

B.    Hidden Markov Model 

A Hidden Markov Model (HMM) can be thought of 

as a Markov chain with unobserved (i.e. hidden) states, 

where in each state the model generates an output 

token based on a stochastic process. In HMM 

modeling, we assume that it is only the sequence of 

output tokens that we observe, but not the underlying 

sequence of states. In other words, the most likely 

sequence of states has to be inferred from the sequence 

of output tokens.  

We represent a HMM by a 5-tuple " = (S, A, V, B, 

#), where S and A denote the state space and the state 

transition matrix that belong to the underlying Markov 

chain model. The three other elements are defined as 

follows: V = { v1, v2, … vM } is the set of the 

observation symbols; B is the emission matrix that 

defines the probability of observing any observation 

symbol at any given state; and # is the set of initial 

state probabilities, that defines the chance of any state 

as being the first in the sequence of states that 

corresponds to the sequence of output symbols. 

 

   1)   Specification of HMM for Modeling of Words 

Distribution 

In the HMM-based approach to hypothesis testing 

for word segmentation algorithms, the hidden states 

correspond to the part of speech information (i.e. 

linguistic categories). We use all of the nine traditional 

linguistic categories that have been defined for English 

words, which are: article, noun, pronoun, adjective, 

verb, adverb, preposition, conjunction and interjection. 

As for the observation symbols, we may use either 

the number of frames or the number of letters in each 

word (which is available from the transcription 

information or estimated from the image). Similar to 

the Markov chain models that we discussed before, 

these two different observation spaces lead to two 

different HMM models, which we will refer to as the 

bounding box-based HMM and the transcription-based 

HMM.  

For the training of the HMM models, we used the 

standard IAM database; as the ground-truth data 

contain the part of speech information, beside the 

bounding box and transcription information. We used 

the standard Baum-Welch algorithm [9] in order to 

estimate the initial, transition and emission 

probabilities. However, as the Baum-Welch algorithm 

is based on a local optimization strategy, it is important 

to start the optimization process with good initial 

guesses in order to avoid local minima. For this 

purpose, we estimated the initial guesses for the 

transition and emission matrices based on a few 

documents of the IAM database. We used Laplace 

(a.k.a. additive) smoothing [10] in order to avoid zero 

probabilities for unknown events (i.e. events that do 

not appear in a limited set of training data). 

 

III.     HYPOTHESES TESTING 

In the following we describe how to detect over-

segmented or under-segmented text lines using the 

words distribution models that we presented in the 

previous section.  

Let O = [ o1, o2, … oT ] be an observation sequence 

corresponding to a word segmentation hypothesis HL = 

[ b1, b2, …, bT ] for a text line L, where each oi is the 

number of frames or letters corresponding to a word bi. 

Obviously, if only the bounding box information is 

available, we have to use the bounding box-based 
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models. However, if the transcription information is 

available as well, or if the number of letters can be 

estimated from word images, we can use the 

transcription-based models.  

In the Markov chain model, we already know the 

system state corresponding to each observation 

symbol. Therefore, the probability of the observation 

sequence can simply be computed as follows: 

 

∏
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In the HMM model, P(O | ") can be computed using 

the forward or backward algorithms [9].  

Having obtained the probability of observation 

sequence for a word segmentation hypothesis H, we 

have to determine whether H must be accepted as good 

segmentation or not. For this purpose, we need three 

statistical populations: a population of perfectly 

segmented lines Dp; a population of over-segmented 

lines Do; and a population of under-segmented lines 

Du. In the following, first we describe the automatic 

generation of these three populations based on the IAM 

database, and then, the process of threshold selection 

for hypothesis testing. 

 

A.    Automatic Generation of Training Data 

Having a collection of training documents that 

contain the transcription/bounding box information at 

line/word level, Dp is readily available from the 

ground-truth data. For the generation of Do and Du, 

first, we estimate the average intra-word distance wintra 

and the average inter-word distance winter by 2-means 

clustering of the distances between all neighboring 

connected components in a document. Then, in order 

to generate over-segmented data, we merge 

neighboring connected components that are closer than 

a percentage of wintra; and in order to generate under-

segmented data, we merge neighboring connected 

components that are closer than a percentage of winter 

. 

B.    Threshold Selection for Hypothesis Testing 

Having obtained Dp, Do, and Du, given a words 

distribution model $, we simply define three 

populations of words distribution probability 

corresponding to perfectly segmented lines, over-

segmented lines and under-segmented lines as follows, 

respectively referred to as PDp, PDo, and PDu: 

 

PDp = { P(di | $ ) :   di ! Dp }               (2) 

PDo = { P(di | $ ) :   di ! Do }               (3) 

PDu = { P(di | $ ) :   di ! Du }               (4) 

 

Now, for the detection of a correctly segmented line 

from an incorrectly segmented line, we simply set the 

threshold to a value that minimizes the empirical 

classification error between PDp and PDo " PDu. 

 

IV.     UNSUPERVISED ADAPTATION OF WORD 

SEGMENTATION ALGORITHM USING WORDS 

DISTRIBUTION MODEL 

A word segmentation algorithm typically has one or 

more parameters that are manually or automatically 

adjusted over a limited set of training documents. 

Using the words distribution models that we descried 

in Section 2, it is possible to automatically adapt a 

word segmentation algorithm to new data sets without 

the need for the ground-truth information.  

Given that we have a range of valid values for each 

parameter and a model of words distribution, we can 

adapt the algorithm to a new data set (e.g. a new 

document) by finding the combination of parameters 

that gives the best word segmentation probability over 

the new data set. In general, there is no guarantee that 

the search space is linear or convex; therefore, it is 

better to conduct an exhaustive search over the space 

of all possible combinations of values in order to find 

the global optimum. The exhaustive search approach is 

possible only if the search space is small, which is 

normally the case here, as a typical word segmentation 

algorithm has only few parameters that need to be 

adjusted.  

 

V.     EXPERIMENTAL RESULTS 

We evaluated the proposed hypothesis testing 

method over a set of unseen documents from the IAM 

database. Fig. 3 shows numerical examples of the log 

probabilities of words distribution computed using the 

bounding box-based Markov chain and HMM models 

for three segmentations of a text line. As can be seen, 

both models assign much higher probabilities to the 

correctly segmented hypothesis, compared to over-

segmented and under-segmented hypotheses. It is 

interesting to observe that the margin between the 

correct and incorrect hypotheses is larger when the 

probabilities are computed by the HMM model. 

In order to estimate the performance of the 

proposed models in the word segmentation context, we 

evaluated the proposed over/under-segmented 

detection method on a test set containing 2500 

correctly segmented text lines and 2500 incorrectly 

segmented text lines. The over/under-segmented text 

lines were generated by applying the method described 

in Section 3.1 to the test database.  The results are 

summarized in Table I in terms of the average 

detection rate of correctly segmented lines Rc, average 

detection rate of incorrectly segmented lines Ri, and the 
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harmonic mean (F-measure) of these two rates FRcRi = 

2Rc.Ri / (Rc + Ri). 

The detection rates achieved using the HMM 

models are higher than the Markov chain models as we 

expect. The transcription-based HMM achieves a very 

high performance for the detection of correctly 

segmented lines. However, the detection rate for 

over/under-segmented lines is lower. This is because 

the geometrical distribution of some incorrectly 

segmented lines overlaps that of correctly segmented 

lines, particularly if the line is over-segmented and 

under-segmented at the same time as shown in Fig. 4. 

This example suggests that in some applications, 

such as word spotting, we may have to generate more 

than one segmentation hypothesis in order to make 

sure that the union of all hypotheses contain the right 

boundaries for all words. In the word spotting system 

proposed in [11], the authors use 10 different distance 

thresholds to generate words segmentation hypotheses 

for each text line. This fixed number of thresholds may 

result in a number of unlikely hypotheses and thereby 

unnecessary computations on the word spotting side. 

However, using the words distribution models that we 

proposed, one can easily reduce unlikely hypotheses 

prior to word spotting, which besides the reduction of 

the computation time, may result in the reduction of 

the false positive rate as well.  

We used the proposed hypothesis testing as a post-

processing step for a typical explicit gap-based word 

segmentation algorithm. The main idea behind gap-

based algorithms is to connect (i.e. consider as part of 

the same word) all connected components that are 

closer than a certain threshold Tw. The threshold is 

dynamically adjusted based on the properties of the 

text. One common way of adjusting the threshold is 

based on the estimates of intra-word and inter-word 

distances [11]. Our experimental results show that a 

threshold value that is set to the weighted mean of 

wintra and winter with much higher weight for wintra gives 

better segmentation results than a threshold value that 

is set to the arithmetic mean of wintra and winter. In our 

experiments, we set Tw = 0.9 wintra + 0.1 winter. The 

correct segmentation rate achieved by the baseline 

algorithm over the test database was 90.3%, which was 

increased to 91.5% using the proposed unsupervised 

adaption technique. Also, the over-segmentation and 

under-segmentation error rates were reduced by a 

factor of 2, i.e. the proposed hypothesis testing method 

was able to automatically detect around 50% of the 

segmentation errors in the output of the word 

segmentation algorithm.  

 

VI.     CONCLUSION 

We presented statistical models for the distributions 

of words in text lines. We studied both the observed-

variable approach and latent-variable approach. We 

presented the training of the proposed models based on 

a standard database of handwritten forms, and then 

used the trained models for the detection of over-

segmentation and under-segmentation errors in the 

output of a word segmentation algorithm, and also for 

the unsupervised adaptation of the free parameters of 

the word segmentation algorithm to new data.  

The main advantage of our proposed method is to 

provide a framework for adding prior knowledge about 

the grammar of the language, using the HMM model, 

to any word segmentation algorithm. Our experimental 

results showed that, although perfect segmentation is 

not always possible without using a larger context, but 

using the proposed method as a post-processing step 

for a word segmentation algorithm, we are able to 

increase the correct segmentation rate and the 

reliability of the algorithm by the automatic detection 

of unlikely segmentation hypotheses.   
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TABLE I.    Performance of proposed models for detection of correctly and incorrectly segmented text lines. 

 

 

Performance 
Markov Chain HMM 

bounding box-based transcription-based bounding box-based transcription-based 

Detection rate for correct segmentation 93.7% 93.2% 97.4% 99.1% 

Detection rate for incorrect sgmntation. 71.1% 72.3% 80.9% 82.6% 

Harmonic mean 80.9% 81.4% 88.4% 90.1% 
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Log probability: (a) input text line 

Bounding box-based HMM: -19.60 

Bounding box-based Markov Model: -18.53 

(b) correctly segmented 

Bounding box-based HMM: -22.41 

Bounding box-based Markov Model: -20.74 

(c) over-segmented 

Bounding box-based HMM: -25.37 

Bounding box-based Markov Model:  -24.51 

(d) under-segmented 

Figure 3.    Words distribution probability corresponding to three different segmentation of a text line. 
 

 

 Log probability: 
Bounding box-based HMM: -20.40 

Transcription-based HMM: -22.71 

 
(a) correct segmentation 

Bounding box-based HMM: -20.40 

Transcription -based HMM: -22.66 

 
(b) wrong segmentation 

Figure 4.    Example of a correct and a wrong segmentation for a text line that have been assigned almost the same distribution probability. 
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