
A Touching Character Database from Chinese Handwriting for Assessing

Segmentation Algorithms

Liang Xu, Fei Yin, Qiu-Feng Wang, Cheng-Lin Liu

National Laboratory of Pattern Recognition(NLPR)

Institute of Automation, Chinese Academy of Sciences

95 Zhongguancun East Road, Beijing 100190, P.R. China

{lxu,fyin,wangqf,liucl}@nlpr.ia.ac.cn

Abstract

For assessing touching character segmentation al-

gorithms, we present a database of touching charac-

ters collected from the Chinese handwriting database

CASIA-HWDB, called CASIA-HWDB-T. It includes

56,469 two-character or multiple-character touching

strings, among which 1,818 strings have multiple-

touching characters. We also partition the touching

strings into 50,157 all-Chinese strings, 2,788 all-digit

ones, 328 all-letter ones, and 3,196 mixed-character

ones. All the strings are annotated with the character

classes, locations of touching points, and auxiliary val-

ues like string height and average stroke width. And

last, we measure the segmentation performance of three

existing algorithms on this database for reference.

1. Introduction

Handwritten Chinese text line recognition is receiv-

ing increasing attention in recent years [9, 11], partially

owing to the availability of public annotated databas-

es (HIT-MW [8] and CASIA-HWDB [6]). The per-

formance of text line recognition depends on the al-

gorithms of character segmentation, classification, and

context modeling. Character segmentation is widely ac-

knowledged to be a challenging problem and still re-

mains un-solved.

Character segmentation methods can be generally

grouped into dissection-based methods and recognition-

based ones [1]. Dissection-based methods have obvious

deficiencies in handwriting because handwritten char-

acters have variable size, location, intra- and between-

character gap, and there are many touching characters.

Recognition-based methods generate candidate charac-

ters and verify using the classifier and contexts. They

can be further categorized into implicit segmentation

and explicit segmentation. The latter is also called

heuristic over-segmentation, and has been prevalently

adopted in Chinese/Japanese handwriting recognition.

Several explicit segmentation algorithms have been

proposed in the last decade. According to the fea-

tures used, these algorithms can be generally cate-

gorized into three types: foreground-based method-

s [2, 3, 10, 14, 5, 12, 13], background-based methods,

and combined foreground-background methods [15, 4].

These methods usually have high segmentation accura-

cy when evaluated directly on the text line image. This

is because that a text line image usually contains a large

ratio of isolated and broken characters, while the num-

ber of touching characters is relatively small. The high

accuracy may obscure the capacity difference of touch-

ing character segmentation, which is currently one of

the core problems for segmentation.

Even though some authors have reported the results

directly on touching strings, it is difficult to assess the

segmentation algorithms because of the unavailability

of a public touching string database. In the Chinese

handwriting segmentation, different authors use differ-

ent databases with different sizes and difficulty. And so

the performance difference may be not very convincing.

To the best of our knowledge, all the touching strings

collected by themselves are not public. Thus, it is nec-

essary to provide an annotated touching string database

to assess the segmentation algorithms.

Our building of Chinese touching character database

was motivated by the work of L.S. Oliveira et al [7]

on providing a touching handwritten numeral string

database, where the touching numeral pairs were syn-

thesized from single handwritten digits and the touch-

ing point was assumed to be the synthesized place. Four

state-of-the-art segmentation algorithms were assessed

on this database. Both the correct segmentation rate

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.173

89

(a) (b) (c) (d)

Figure 1. Examples of (a) single-touching
pair, (b) single-touching string with more

than two characters, (c) multiple-touching
pair, and (d) touching string with more

than two characters including at least a
multiple-touching pair.

and computation cost for the postponed numeral string

recognition were considered.

However, there are still some differences between

the synthesized sample and the real sample in daily life.

We decide to collect all the touching strings directly

from the database CASIA-HWDB. These real touching

samples may be better to reflect the practical situation

than the synthesized samples.

In total, we collected 56,469 touching samples which

contain two or more characters to form our touch-

ing string database, called CASIA-HWDB-T. Specif-

ically, it includes 48,536 single-touching pairs, 6,115

single-touching strings with more than two characters

and 1,818 multiple-touching pairs. Some examples are

shown in Figure 1. In order to consider different spe-

cific usages, we also partition the touching strings in-

to 50,157 all-Chinese strings, 2,788 all-digit ones, 328

all-letter ones, and 3,196 mixed-character ones. All

the touching samples are annotated with the character

classes, locations of touching points, and auxiliary val-

ues like string height and average stroke width. This

touching string database will be public at our database

webpage 1.

2. Database

We firstly introduce the scheme for annotation of this

touching string database. Then we present the statistics

of this database.

2.1 Annotation of database

Before the introduction to the annotation of our

touching string database, we briefly describe the source

handwriting database CASIA-HWDB [6]. It has been

collected and annotated by the authors’ group recent-

ly. It contains about 5,090 paragraphs of handwritten

texts and 1.35 million segmented character samples. It

1http://www.nlpr.ia.ac.cn/databases/handwriting/Home.html

is involved with over 2,600 commonly used character

classes (e.g. Chinese, digit, English letter, punctuation

mark). Each segmented character sample is stored as

gray-scale image in a DGR file, with records such as its

class label, position, the bitmap, and so on. The gray-

scale image has its background pixels uniformly set as

255 and can be easily converted to the binary image.

Each DGR file is made up of all the character samples

in a handwritten text page, with the sequential order of

text lines. Figure 2 shows an example of a text line

image with its character-level annotation in this source

database.

With the help of character-level annotation in the

source database, we can extract all the touching char-

acters automatically using a simple scheme as follows.

We check the foreground pixels of two consecutive

character parts in the annotated text line image; If there

exists any foreground pixel touching, then these two

characters belong to a touching string. Meanwhile, ac-

cording to the eight-connected checking of touching

foreground pixels, we can get the number and location

of touching points between these two character sam-

ples. All the detected touching strings together with

their touching points’ location information are saved in

a ground truth file.

According to the number of characters, a touching

string can be generally classified as a touching pair and

a touching string with more than two characters. Ac-

cording to the number of touching points between two

characters, a touching pair can be classified as single-

touching and multiple-touching pair. Figure 1 shows

some examples of four types of touching strings. For

single-touching pair with all Chinese characters, Liu et

al [5] further defines five different types as shown in

Figure 3. And we have analyzed the ratio of five type-

s on randomly sampled 1,000 single-touching Chinese

pairs and found that all these five types occupies about

ninety-eight percent of all the examined samples.

We have investigated all the above detected touching

strings and found that most of them belong to the type

of single-touching pair. And most of remaining strings

belong to other two types of single-touching string with

more than two characters and multiple-touching pair.

Thus we decide to build our touching string database

(CASIA-HWDB-T) by the above three representative

types. Figure 4 presents some examples of each type

available in our database.

In the following, we will introduce the ground truth

file’s format for each touching string. As aforemen-

tioned, we have already get the information about the

character class label and touching points’ locations of

the string automatically. Moreover, in order to facilitate

the comparison of different segmentation algorithms,

90

Figure 2. Example of a ground-truthed
text line image in CASIA-HWDB (triangles

point to a touching pair).

Type Touching

Stroke Relation

Rate

(%)

Examples

1

27.3

2

34.4

3

20.4

4

12.9

5

3.2

Figure 3. Touching types of single-
touching Chinese character pair [5].

we save the value of two parameters estimated from the

whole text line image: string height (LH) and average

stroke width (SW). Both parameters are often used in

a segmentation algorithm to normalize different writing

styles and pen thickness. As a result, the ground truth

file of a touching string includes character labels, loca-

tion of touching points, and auxiliary values (LH and

SW). Figure 5 gives an example of the ground truth file

for a single-touching pair.

We manually remove all the mislabeled touching

strings by a checking tool, since some annotations

in the source database of text lines may be incorrec-

t. Also, some touching strings with a character la-

bel out of the pre-defined character set are removed.

All the remaining touching strings are used to form

our database (CASIA-HWDB-T), which includes three

subsets: single-touching pair (HWDB-ST-P), single-

touching string with more than two characters (HWDB-

ST-M), and multiple-touching pair (HWDB-MT).

2.2 Statistics of database

We investigate the number of touching strings,

touching points and characters in this database plus it-

(a) !"#$%&'*+,c-"#$.a"/0 1"*- *1+ 2-"#&0& c-a/ac*&/0

(c) !"#$%&'*+,c-"#$ 0*/"#$0 1"*- 3+/& *-a# *1+ 2-"#&0& c-a/ac*&/0

6 84

(d) 4,%*".%&'*+,c-"#$.a"/0 "#c%,d"#$ 2-"#&0& c-a/ac*&/0 +/ d"$"*0

6%

45

er

(b) !"#$%&'*+,c-"#$.a"/0 "#c%,d"#$ a 2-"#&0& c-a/ac*&/5 +/ .,#c*,a*"+#5 +/ d"$"*5 +/ %&**&/

Figure 4. Examples of touching string
samples extracted from the database

(with character class labels at the left bot-
tom of each image).

2%a006

786 (9:5:;) (9<5::)

!=6 >

?@6 A;

(9:5:;)

(9<5::)

(a) (b)

Figure 5. Example of (a) the ground-truth
information, (b) the touching point (in red)

and its two terminals for a single-touching
pair from Figure 2.

s above three subsets, as depicted in Table 1. We can

see that this database contains a large number of touch-

ing strings sufficient for segmentation experiment. On

average, each string have 1.2 touching points and 2.1

characters. It is in accordance with our observation

that most touching strings belong to the type of single-

touching pair. For HWDB-ST-M, the number of charac-

ters is about three times than touching strings. So most

of single-touching strings with more than two character-

s actually have only three characters. For HWDB-MT,

the number of touching points is about two times than

touching strings. Thus, most of multiple-touching pairs

actually have only two touching points (i.e. double-

touching pair).

We also partition the touching strings into 50,157 all-

Chinese strings, 2,788 all-digit ones, 328 all-letter ones,

and 3,196 mixed-character ones, as depicted in Table 2.

All-Chinese strings can be met in Chinese mail address

recognition and business form processing. And all-digit

91

er

45 84 !
"#

5

$ 6 $8

&'' ()*r

+,
+-.

//0e

(a) B+,c-"#$ d"$"* 0*/"#$0

(b) B+,c-"#$ C#$%"0- %&**&/ 0*/"#$0

Figure 6. Examples of touching string
samples including all digits or English let-

ters extracted in the database.

strings and all-letter ones can be met in bank check

recognition. And it is suitable to design individual seg-

mentation algorithms on these all-Chinese strings and

all-digits ones, for their large numbers. Figure 6 shows

some examples of all-digits and all-letters strings, while

Figure 4a and Figure 4b show some examples of all-

Chinese ones and mixed-character ones, respectively.

Table 1. Statistics of CASIA-HWDB-T
according to the subsets of single-

touching pair, single-touching string with
more than two characters and multiple-

touching pair.

Dataset #String #Touch Point #Character

HWDB-ST-P 48,536 48,536 97,072

HWDB-ST-M 6,115 13,367 19,482

HWDB-MT 1,818 3,756 3,636

Total 56,469 65,659 120,190

Table 2. Statistics of CASIA-HWDB-T ac-

cording to Chinese, alphanumerical char-
acter’s partition.

Dataset #String #Touch Point #Character

allChinese 50,157 57,749 106,090

allDigits 2,788 3,601 6,320

allLetters 328 440 765

other 3,196 3,869 7,015

3. Segmentation algorithms

We have measured the performance of three existing

over-segmentation algorithms on this database for ref-

erence.

(1) The first algorithm is proposed by Liu et al [5].

It is based on local contour analysis to generate candi-

date separating points according to five touching types

as in Figure 3. Then a complementary operation rely-

ing on vertical projection and stroke crossing number is

invoked to produce some extra separating points. This

algorithm has been successfully applied to handwritten

Japanese address recognition.

(2) The second algorithm, proposed by Xu et al [12],

takes into account the information of the whole contour,

of which upper and lower part are matched by Dynam-

ic Time Warping (DTW). All the contour corner points

together with their matched contour points are used to

form the candidate separating lines. Then four heuristic

rules are applied to remove some redundant separating

lines.

(3) Differently from the previous two algorithms,

the third one takes into account the foreground skele-

ton analysis, together with the contour analysis. It is

proposed by Xu et al [13] recently. Candidate separat-

ing points are detected on the skeleton. Then candidate

separating lines are formed according to contour infor-

mation. Four rules as in the second algorithm, plus an-

other heuristic utilizing the profile visibility metric of

the separating line, are used to remove some redundant

separating lines.

4. Experiments

For each over-segmentation algorithm, we should

at first identify the touching pattern in the string im-

age. After extracting connected components and merg-

ing highly overlapped ones, we treat components with

large width (greater than 0.8 ×LH) or width-to-height

ratio (greater than 1.3) as candidate touching patterns.

Then we apply an over-segmentation algorithm to gen-

erate candidate separating points (or lines), where we

cut to form a list of primitive segments. Algorithm #1,

#2 and #3, implemented in C++, take about 0.3, 3 and

4.6 ms to run on a 83 × 123 resolution image (single-

touching character pair) with a personal computer (Intel

Core2 CPU 3GHz), respectively.

We evaluate the previous over-segmentation algo-

rithms directly according to the distance (d) between

a candidate separating point and a touching point. And

we consider a correct segmentation when d is less than

a threshold dth, which is set as 2 × SW empirically.

The overall performance of over-segmentation is mea-

sured by the recall rate R and the precision rate P , as

following.

92

R =
of correct separating points

of touching points
× 100%

P =
of correct separating points

of candidate separating points
× 100%

R is called correct segmentation rate and used to as-

sess the segmentation algorithms for touching numerals

in [7].

The result on the whole touching string database is

shown in Table 3, while the results on each subset is

given in Table 4. If we only consider the recall rate R

as [7], then algorithm #2 performs best. And algorith-

m #3 has similar result. For the results on the subset, we

can see that the performance on the multiple-touching

pairs is much lower than other two subsets of single-

touching strings. On contrary, algorithm #1 performs

best on the multiple-touching case. It is because that

algorithm #2 and #3 are mainly designed for single-

touching case.

Table 3. Performance comparison on the
whole database HWDB-DB-T.

Algorithm R (%) P (%)
1 67.3 68.5

2 83.1 19.4

3 80.9 46.7

Table 4. Performance comparison (%) on
the three subsets: HWDB-ST-P (ST-P),

HWDB-ST-M (ST-M) and HWDB-MT (MT).

ST-P ST-M MT

Algorithm R P R P R P

1 68.8 67.7 67.2 70.9 48.6 73.4

2 85.5 18.3 91.4 25.6 22.0 14.3

3 82.6 44.9 86.4 54.2 39.5 47.2

However, besides high recall rate R, it is necessary to

have at least a moderate precision rate P . A lot of can-

didate separating points can generate a lot of primitive

segments, which may form a lot of hypothesis patterns.

And all the patterns should be evaluated by a classifi-

er, leading to expensive computation cost. Moreover,

a lot of hypothesis patterns can cause many confusing

recognition results, with the currently unperfect classi-

fier for the large character set. Figure 7 depicts an ex-

ample of an image segmented by algorithm #3 and it-

s corresponding segmentation graph. We can see that

the algorithm generates two candidate separating points

(SP0 and SP1) and five primitive segments (S0 to S4),

!7;

!78

!; !8 !9 !D !<

Figure 7. Example of a segmentation
graph for a single-touching pair.

three of which (S1, S2 and S3) are produced by two

separating points. Assuming that a hypothesis pattern

should contain at most three consecutive primitive seg-

ments, we form totally twelve hypothesis patterns and

must invoke the classifier twelve times to get a score

for each pattern. And a path with the maximal score is

found in the graph to represent the final segmentation

and recognition result.

Table 5 reports the average number of primitive seg-

ments generated by the three over-segmentation algo-

rithms and the average number of classifier calls on this

database. We can see that the number of classifier calls

is polynomial (O(n2)) to the number of primitive seg-

ments.

In order to evaluate the over-segmentation algo-

rithms indirectly, we apply the string recognition sys-

tem only with character classifier as in [11]. And we

measure the recognition performance by accuracy rate

(AR) and correct rate (CR). CR represents the percent-

age of characters correctly recognized while AR further

considers the number of incorrect characters inserted

and may have minus value. Table 6 and Table 7 show

the string recognition result on the database and its three

subsets, respectively. We can see that algorithm #2 has

the worst performance of accuracy rate AR although it

has the highest recall rate R. It is because that algorith-

m #2 has very low precision rate P , leading to a lot of

confusing patterns to the classifier and many insertion

errors (i.e. low AR). In the text line recognition, the

string recognition performance can be improved signif-

icantly by incorporating contexts (e.g. language model)

to reduce confusions and insertion errors [11].

In summary, we argue that the objective of over-

segmentation is to have a high recall rate R, with at

least a moderate precision rate P , which means an ac-

ceptable computation cost and a small number of recog-

nition confusions. In this view, algorithm #3 would be

93

the best choice while algorithm #1 is also a good one.

Table 5. The average number of prim-

itive segments generated by the over-

segmentation algorithms and corre-
sponding classifier calls.

#Primitive segments #Classifier calls

Algorithm Mean Std. Dev. Mean Std. Dev.

1 2.6 1.0 5.2 3.6

2 4.8 2.0 15.3 10.3

3 3.5 1.5 9.0 6.8

Table 6. String recognition performance

comparison on the whole database.

Algorithm AR (%) CR (%)
1 50.1 61.0

2 6.4 61.8

3 35.3 66.2

Table 7. String recognition performance

comparison (%) on the above three sub-
sets.

ST-P ST-M MT

Algorithm AR CR AR CR AR CR

1 51.3 63.0 46.8 54.2 35.8 45.0

2 5.9 62.8 13.8 65.1 -19.0 17.1

3 35.2 67.2 39.2 67.2 18.8 35.9

5. Conclusion and future works

We briefly introduce a touching string database from

Chinese handwriting. Our aim is to facilitate the com-

parison of various segmentation algorithms. Mean-

while, the database will be public on the web site, hope-

fully helping the research on the segmentation of touch-

ing strings. And ultimately we hope this database can

improve the performance of handwritten Chinese text

line recognition. In the future, we will add the experi-

mental results of other typical segmentation algorithms

in Chinese handwriting. Also, we will do further statis-

tical analysis about the touching points on this database.

Acknowledgment

This work was supported by the National Ba-

sic Research Program of China (973 Program) Grant

2012CB316302, the Strategic Priority Research Pro-

gram of the CAS (Grant XDA06030300), the Na-

tional Natural Science Foundation of China (NSFC)

Grants 60825301 and 60933010. The authors thank Dr.

Tonghua Su and Dahan Wang for helpful discussions.

References

[1] R. Casey and E. Lecolinet. A survey of methods and

strategies in character segmentation. IEEE Trans. Pat-

tern Anal. Mach. Intell., 18(7):690–706, 1996.

[2] J. Gao, X. Ding, and Y. Wu. A segmentation algorithm

for handwritten chinese character strings. In Proc. 5th

ICDAR, pages 633–636, 1999.

[3] H. Ikeda, Y. Ogawa, M. Koga, H. Nishimura, H. Sako,

and H. Fujisawa. A recognition method for touching

japanese handwritten characters. In Proc. 5th ICDAR,

pages 641–644, 1999.

[4] Z. Liang and P. Shi. A metasynthetic approach for seg-

menting handwritten chinese character strings. Pattern

Recognition Letters, 26(10):1498–1511, 2005.

[5] C.-L. Liu, M. Koga, and H. Fujisawa. Lexicon-driven

segmentation and recognition of handwritten character

strings for japanese address reading. IEEE Trans. Pat-

tern Anal. Mach. Intell., 24(11):1425–1437, 2002.

[6] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang. Casi-

a online and offline chinese handwriting databases. In

Proc. 11th ICDAR, pages 37–41, 2011.

[7] L. S. Oliveira, A. de Souza Britto Jr., and R. Sabourin.

A synthetic database to assess segmentation algorithms.

In Proc. 8th ICDAR, pages 207–211, 2005.

[8] T. Su, T. Zhang, and D. Guan. Corpus-based hit-mw

database for offline recognition of general-purpose chi-

nese handwritten text. IJDAR, 10(1):27–38, 2007.

[9] T. Su, T. Zhang, D. Guan, and H. Huang. Off-

line recognition of realistic chinese handwriting us-

ing segmentation-free strategy. Pattern Recognition,

42(1):167–182, 2009.

[10] M. Suwa. Segmentation of touching handwritten

japanese characters using the graph theory method. In

Proc. 8th DRR, pages 280–289, 2001.

[11] Q.-F. Wang, F. Yin, and C.-L. Liu. Handwritten chinese

text recognition by integrating multiple contexts. IEEE

Trans. Pattern Anal. Mach. Intell., 2012, in press.

[12] L. Xu, F. Yin, and C.-L. Liu. Touching character s-

plitting of chinese handwriting using contour analysis

and dtw. In Proc. 2010 Chinese Conference on Pattern

Recognition(CCPR), pages 814–818, 2010.

[13] L. Xu, F. Yin, Q.-F. Wang, and C.-L. Liu. Touch-

ing character separation in chinese handwriting using

visibility-based foreground analysis. In Proc. 11th IC-

DAR, pages 859–863, 2011.

[14] T. Yamaguchi, S. Tsuruoka, T. Yoshikawa, T. Shinogi,

E. Makimoto, H. Ogata, and M. Shridhar. A segmenta-

tion system for touching handwritten japanese charac-

ters. In Proc. 8th IWFHR, pages 407–412, 2002.

[15] S. Zhao, Z. Chi, P. Shi, and H. Yan. Two-stage segmen-

tation of unconstrained handwritten chinese characters.

Pattern Recognition, 36(1):145–156, 2003.

94

