
On-line handwritten flowchart recognition, beautification, and editing system

Hidetoshi Miyao and Rei Maruyama

Faculty of Engineering, Shinshu University, Japan

miyao@cs.shinshu-u.ac.jp

Abstract

In order to segment and recognize on-line

handwritten flowchart symbols precisely, we propose

a method that segments the graphic symbols based on

the loop structure and recognize the segmented

symbols by using SVMs. In our experiments, low error

rate of 3.37% for symbol segmentation and high

recognition rate of 97.6% were obtained. We also

propose a beautification and editing method for

recognized symbols, and implement them to construct

a prototype system. We compare an input time for

drawing flowcharts between our system and a

traditional application using icon-based interface. As

a result, the input time on our system was faster than

that on traditional one for flowcharts without texts.

Keywords: flowchart recognition, symbol

beautification, on-line handwritten symbol,

segmentation, SVM.

1. Introduction

A flowchart is a diagram that can represent

algorithms or process flow by using symbols of boxes

and flow lines. The shape of the box is determined

according to the type of process and a text in the box

represents the concrete content of the process. The

flow lines connect with the boxes and can represent

the order of processes.

Users often use commercial applications such as

Microsoft Visio [1] when they draw flowcharts. In

such systems, symbol icons are located beside a

drawing area, a user selects a desired icon from them,

and drags it to the drawing area with a computer

mouse. A flowchart can be completed by these

operations repeatedly. However, these systems have

the following disadvantages:

 It should be a troublesome task to draw a symbol

because a user has to move a pointing device

frequently over a long distance between the

symbol icon area and the drawing one.

 The symbol icon area narrows the region of

drawing area.

Therefore, several on-line handwritten flowchart

recognition systems with a pen computer have been

developed [2,3,4]. In the systems, the main problem is

that it could not segment flowchart symbols precisely.

Yuan et al. [2] have realized to segment between

graphic symbols (i.e. boxes and flow lines) and texts

by forcing a user to select an input mode explicitly.

Moreover, the graphic symbols are segmented based

on the operation rule that one graphic symbol must be

drawn with one stroke. However, it would be

inconvenience for some graphic symbols since it is

unnatural to draw it with one stroke. Lemaitre et al.

[4] have proposed the method that can segment the

symbols by defining syntactic rules for flowchart

even if the graphic symbols and texts are written all

together and each graphic symbol is drawn with one

or more strokes. However, the result of text

segmentation and recognition rate is 71.7% and the

rate for graphic symbols is 72.8%, it would not be

enough for practical use.

 In order to obtain high performance of

segmentation and recognition of flowchart symbols,

we propose a method with the following features:

 For segmentation between graphic symbols and

texts, we have considered that the previously

proposed methods could not realize to obtain

enough segmentation performance. Thus we

adopt the method that a user can add a text to a

recognized graphic symbol by using another

input window. The text can be handwritten and

then recognized. In this way, it would be easy to

write texts and they can be segmented precisely.

 We have noticed that graphic symbols except

flow lines include a closed loop. Thus, we

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.250

83

propose a method that a closed loop is checked

every time a stroke is drawn, if the closed loop is

extracted, then it is segmented as a graphic

symbol. In this way, they can be segmented

without complex structural syntactic rules.

Moreover, a user can draw a graphic symbol

with one or more strokes which can be written in

any order.

 In the related works [2,3,4], methods for

beautification of symbols and editing them are not

mentioned. Therefore, we also propose how to fix up

recognized symbols serially and edit them. In our

system, the edit function includes movement, resizing,

deletion, and adding a text for graphic symbols.

2. Target symbols and system constraints

We assume that a flowchart diagram is drawn with

a pen device on a tablet PC or a tablet device

connected to a PC. The target 12 symbols are shown

in Fig.1. We refer to the symbols from #1 to #11 as

graphic symbols. In particular, the symbols from #1 to

#10 are referred to as loop symbols. The symbols #1,

#2, #3, #4, #5, #11, and #12 are treated in the related

researches [2,3,4], i.e. the symbols from #6 to #10 are

not treated.

#1 Terminal

#2 Connector

#3 Process

#4 Data

#5 Decision

#6 Preparation

#7 Loop limit (start)

#8 Loop limit (end)

#9 Document

#10 Predefined Process

#11 Flow line

#12 Text
Figure 1. Target symbols

The system constraints are as follows:

 Strokes which belong to a loop symbol, must be

drawn in succession. But they can be drawn in

any order.

 A stroke which belongs to two or more graphic

symbols is not permitted. For example, flow line

and decision symbol cannot be written with one

stroke.

 Symbol #10 has to be written with one stroke

because only this symbol includes a multi-loop

structure.

 Interflow of flow lines is not permitted. In other

words, terminal points of flow lines must connect

with either a graphic symbol or nothing.

3. Symbol segmentation and recognition

We assume that each stroke is a connected

component from pen-down to pen-up. We also assume

that each stroke is represented as a sequence of 2D

coordinates of pen positions. In order to divide

handwritten strokes into strokes which belong to loop

symbols (from #1 to #10 in Fig.1) and others which

belong to flow lines, we use the following procedures:

 Terminal points of unfixed strokes are examined

every time a stroke is drawn.

 If the positions of any two terminal points are

close enough, they are connected.

 It is examined whether there is a loop structure.

If the loop structure is extracted, a set of unfixed

strokes (or one unfixed stroke) which belong to

the loop, is segmented as a loop symbol and

other strokes are extracted as flow lines (as

shown in Fig.2).

f

extraction of

loop symbol

loop

symbol

flow line

segmentation

Figure 2. Loop symbol segmentation

Next step is to recognize the segmented loop

symbol. The bounding box that surrounds a sequence

of sampling points of the loop symbol is normalized to

64 x 64 pixels. An image of the loop symbol is

generated by connecting the sequence of points for

each stroke. The loop symbol image is then partitioned

into 8 x 8 blocks. Four patterns emphasizing four

directions (vertical, horizontal, left slant, and right

slant) at every block are detected. As a result, 256

features (8 x 8 x 4) are extracted. This feature does not

depend on the size of handwritten symbol and the

stroke order. To classify the loop symbols, we use

SVM (a two-class classifier) [5]. For an individual

84

class, an SVM is trained using the features extracted

from all the test examples and the corresponding target

values (1 for positive examples and -1 for negative).

However, after the size normalization process, it is

difficult to distinguish between symbol #1 (Terminal)

and #2 (Connector) because they are almost the same

image. Therefore, we treat them as the symbols that

belong to a same class in this step. As a result, 9

SVMs (i.e. SVMs for classifying each loop symbol

#1+ #2, #3, #4, ..., #10) are constructed. In practice,

we adopted the Gaussian kernel as a kernel function

and used SVMlight [6] to train the SVMs. To apply

SVM to a multiclass symbol recognition problem, we

used the one-versus-the-rest (1vr) approach [5].

Finally, if the recognized class is symbol #1+#2, we

can classify them based on the aspect ratio of the

bounding box of the symbol. In this way, the

segmented loop symbol is recognized.

The recognized loop symbol is reshaped based on

the position and size of original handwritten symbol

and the type of the recognized class. Then it is

displayed on the drawing area. At the same time, the

candidates of loop symbols are displayed aside of the

reshaped symbol as shown in Fig.3. They are ordered

according to the output value of SVMs. A user can

select a symbol from the candidates and modify the

recognition result if necessary.

Figure 3. Candidate selection of loop symbols

4. Beautification of recognized symbols

Next process is to make a connection between

associated symbols, fix up them and output them to

the drawing area. This process is done every time after

a loop symbol is recognized. As a result, all the

symbols come to be fixed. The process is as follows:

(1) If a terminal point of a flow line is close enough

to a loop symbol (i.e. the terminal point is located

in the dotted box surrounded the loop symbol

shown in Fig.4), the terminal point is connected

to the nearest point among 4 black dots on the

edge of loop symbol as shown in Fig.4. In this

connection, if the line flows in the loop symbol,

an arrow symbol is attached to the terminal

automatically. The flow direction is determined

based on the writing direction of the flow line.

(2) If a terminal point of a flow line is close enough

to a terminal point of another flow line, they are

connected with each other.

(3) Flow lines are reshaped with horizontal line and

vertical one. If a flow line intersects with a loop

symbol, the line is also reshaped to avoid the

intersection.

(4) If two or more loop symbols are placed almost

vertically, all the symbols are aligned with the

horizontal center line of the top loop symbol.

Top

Bottom

Left Right

Flow

line

Figure 4. Connection between flow line and loop
symbol

 Flow lines written after drawing a loop symbol still

remain in unfixed situation in the drawing area. To fix

them explicitly by a user, when the side button of a

pen device is pressed, the above mentioned process is

also invoked.

5. Editing functions

A user can apply an edit function to fixed symbols.

This function can be called by pressing an objective

symbol or the other drawing area for 1 second with the

pen device and then a menu is popped up around the

cursor as shown in Fig.5. The user can select the

intended function from the menu and apply it to the

objective symbol. The contents of the menu depend on

the type of selected object as denoted in Table 1.

menu is

popped up
pressing the symbol

for 1 second

Figure 5. Calling pop-up menu for editing

85

Table 1. Contents of pop-up menu for each
object

Type of object Content of operations

Loop symbols

Deletion, Adding a text,

Modification of symbol,

Display of property

Flow lines

Deletion, Adding a text,

Reverse of arrow

direction,

Display of property

Other regions
Deletion of all symbols,

Display of property

If the user selects the function of adding a text for

loop symbols, another window is popped up and the

user can handwrite texts there as shown in Fig.6. They

are recognized by the handwriting recognizer

developed by Microsoft [7] and it is pasted into the

objective symbol. On the other hand, if the user selects

the function of adding a text for flow lines, the user

can only select a text of either “Yes” or “No” in the

current system. The text is pasted aside of the

objective line.

Figure 6. Handwriting recognizer for text inputs

 In order to move or resize a fixed loop symbol, the

user has to point the symbol and press the side button

of the pen device, and then the 4 vertices of bounding

box for the loop symbol are indicated by red spheres

as shown in Fig.7. In this situation, if the pen is moved

with pressing the button (i.e. it means a drag

operation), the symbol can be moved. On the other

hand, the drag operation for one of the red spheres is

to resize the symbol. In these operations, the flow

lines connected with the edited symbol are reshaped as

shown in the right of Fig.7. Furthermore, if the flow

lines intersect with a loop symbol, the lines are also

reshaped without the intersection.

Figure 7. Resizing loop symbol

6. Experimental results

In the experiment, we used a tablet device

(WACOM Intuos3 PTZ-630) connected to a PC.

First, we explain an experiment for symbol

segmentation. We used 5 flowcharts shown in Fig.8

for the evaluation. Two writers wrote them (except for

texts) 10 times for each sample. As a result, the error

rate of symbol segmentation was 3.37% (=35/1040).

The reason of the error was that some loop symbols

could not be structured when two terminal positions of

strokes were away from each other and they were not

connected in despite of they should be connected

ideally.

Sample #1 Sample #2
Sample #3

Sample #4 Sample #5

Figure 8. Samples used for experiments

86

Table 2. Results of symbol recognition

Symbol type Recognition rate [%]

#1 Terminator 92.0

#2 Connector 96.5

#3 Process 99.0

#4 Data 98.5

#5 Decision 100.0

#6 Preparation 98.0

#7 Loop limit (start) 97.5

#8 Loop limit (end) 95.0

#9 Document 99.5

#10 Predefined process 100.0

Total 97.6

Next, we examined the performance of symbol

recognition assuming that the symbols are correctly

segmented. A writer wrote 120 symbols for each loop

symbol (from #3 to #10) and wrote 60 symbols for

each of Terminal (#1) and Connector (#2) symbols. In

total, 1,080 samples were acquired and they were used

to train 9SVMs. For other two writers, each writer

wrote 100 symbols for each symbol (from #1 to #10).

In total, 2,000 samples were acquired and they were

used as test samples. Table 2 shows the results of

symbol recognition rates for the test samples. The high

average recognition rate of 97.6% was obtained. From

these results, the error rate of symbol segmentation is

low (3.37%) and the symbol recognition rate is high

(97.6%), therefore the total accuracy should be more

than 90%. In the related work [4], the result of graphic

symbol segmentation and recognition rate is 72.8%.

We could not simply compare this result with ours

because the previous work deal with symbols

including texts and the target symbols are different.

However, it is considered that the symbol

segmentation and recognition rate of our system is

fairly high.

Finally, in order to evaluate the usability of our

system, we compared our system with the commercial

application Microsoft Visio 2010 [1].

Regarding the space of drawing area, the area of

our system is about 10% larger than that of Visio since

our system does not have to locate a various kinds of

icons. Therefore, it could be more suitable for use on a

portable terminal with restricted drawing area.

Next, 12 writers wrote 5 flowcharts shown in Fig.8

using both systems and the input time was measured.

Sample #4 and #5 include English and Japanese texts.

Table 3 shows the average input time for each sample.

From these results, the input time of our system is

slightly faster than that of Visio only if graphic

symbols are drawn. The reason of obtaining only little

difference is that almost writers are unfamiliar with a

tablet device. Thus, the same 5 flowcharts without

texts were drawn by another writer who was familiar

with a tablet. As a result, the total input time was

about 122[s]. It is much faster than the total average

time (158.47[s]) shown in Table 3. Therefore it is

considered that the input time can be greatly improved

by being familiar with a tablet device. Moreover, in

Visio, the movement distance of the pointer tends to

be long since a user has to move the pointer frequently

between the icon area and the drawing area. On the

other hand, in our system, most of the operations can

be done without large movement of the pointer. This is

the reason why the input time of graphic symbols with

our system is faster than that with commercial

applications. However, regarding the input time of

symbols including texts (samples #4 and #5 in Fig.8),

the input time of our system is fairly longer than that

of Visio since an input time for handwriting texts is

generally longer than that for writing texts with

keyboards and it also takes a little time to call the edit

menu in our system.

Table 3. Average input time for each sample
[s]

System #1 #2 #3 #4 #5

Ours 28.33 41.51 42.30
78.24

(17.10)

134.33

(29.23)

Visio 31.27 43.18 43.48
40.14

(14.95)

82.71

(31.95)

The values in parentheses denote the time not
included time of text input

7. Conclusion

In order to segment and recognize on-line

handwritten flowchart symbols precisely, we proposed

the method that segments the graphic symbols based

on the loop structure and recognize the symbols by

feeding the directional features of symbol image into

SVMs. In our experiments, the error rate of

segmentation was 3.37% and recognition rate was

97.6% for the 10 target symbols. The results show that

our system is sufficiently practical. However, there are

the following problems in the current system:

 The user always requires attention to making a

loop structure when he/she draws a graphic

symbol.

 Loop symbols including a multi-loop structure

have to be written with one stroke. Thus, it is

unnatural way to draw.

We also proposed the beautification and editing

methods for recognized symbols, and implemented

them to construct a system. In order to examine the

87

usability of our system, we compared it with a

traditional application using icon-based operations. As

a result of the experiment, the input time on our

system was faster than that on the traditional one for

only graphic symbols. However, it took a longer time

to input texts in our system.

In future work, we plan to improve the system by

solving the above mentioned problems

References

[1] Microsoft Visio 2010, http://office.microsoft.com/en-

us/visio/

[2] Z. Yuan, H. Pan, and L. Zhang, “A Novel Pen-Based

Flowchart Recognition System for Programming

Teaching,” in WBL, ser. Lecture Notes in Computer

Science, E. W. C. Leung, F. L. Wang, L. Miao, J. Zhao,

and J. He, Eds., vol. 5328. pp.55-64, Springer, 2008.

[3] A. M. Awal, G. Feng, H. Mouchere, and C. V. Gaudin,

“First Experiments on a new Online Handwritten

Flowchart Database,” in Document Recognition and

Retrieval XVIII, 2011.

[4] A. Lemaitre, H. Mouchere, J. Camillerapp, and B.

Couasnon, “Interest of syntactic knowledge for on-line

flowchart recognition,” in Proc. of ninth IAPR

International Workshop on Graphics Recognition

(GREG2011), pp.85-88, 2011.

[5] C. M. Bishop, “Pattern Recognition and Machine

Learning,” Springer, 2006.

[6] T. Joachims, “Making large-scale SVM learning

practical,” In Advances in Kernel Methods, Chapter11,

MIT Press, 1999.

[7] Microsoft MSDN, http://msdn.microsoft.com/

88

