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Abstract

Tabular structure detection and recognition can be

a valuable step in the analysis of unstructured docu-

ments. The noisy handwritten documents we try to an-

alyze may contain pre-printed rulings as the substrate,

hand-drawn rulings, machine-printed text, handwritten

text, and signatures, in addition to the tabular structures

which we wish to decompose into basic cells, rows, and

columns. Although work has been done to machine-

printed documents, noisy handwritten documents may

require modified and/or new techniques. In this work,

we try to detect and decompose tabular structures into

2-D grids of table cells simultaneously. First, we detect

“key points” that help determine the physical and log-

ical structure of tables. Then, we make use of the 2-D

grid assumption to build grids of key points. Finally, we

extract structural features for the Min-Cut/Max-Flow

algorithm to recognize tabular structures. Experiments

on 22 tables which contain 584 table cells show a cell

precision of 100% and a cell recall of 93.3%.

1. Introduction

Tables are one common way in people’s communica-

tion, including web pages, data spreadsheets, machine-

printed documents, and handwritten ones. As an in-

dexing scheme, tables have physical and logical struc-

ture [9, 21, 8]. Physical structure describes the loca-

tions of table components, e.g., headers, rows, columns,

cells, rulings. Logical structure defines how table com-

ponents connect to each other to form a set of relational

n-tuples [22]. For example, a cell can be defined in the

logical structure as (Row[i],Column[j]), and it can also

be defined in the physical structure as the rectangular

region in the table.

The target documents we try to analyze retain char-

acteristics of documents from people’s daily lives,

where varies of components may present: machine-

printed text, handwriting, pre-printed rulings, hand-

drawn rulings, signatures, etc. In addition, flexible tabu-

lar structures such as empty cells call for modifying ex-

isting techniques and/or proposing new ones to handle

the complexities. See Figure 1 for an example. First,

it is obvious that existing ruling-based table analysis

methods should take into account of the pre-printed rul-

ings. Second, those who assume complete table rul-

ings may fail since in this table, several horizontal table

rulings are not drawn. For white-space based methods,

on the other hand, some of them are expected to mis-

capture the space at the end of the second table row.

Hu et al., summarize the problem of table analysis as

two sub-problems: detection and recognition [11]. Ta-

ble detection focuses on finding table regions. Lauren-

tini and Viada use horizontal and vertical rulings as ini-

tial evidence for tables in machine-printed documents,

and then employ several tests to exclude non-tabular ar-

eas [12]. Some other work does not rely on the pres-

ence of ruling lines. Hu et al., introduce an inside-space

based table detection method that does not rely on rul-

ings and is also medium independent [11]. Our previous

work tried to justify its efficacy on handwritten inputs

and found out that their approach can not handle all the

complexities [5]. Shafait and Smith extend the work to

multi-column documents [16].

Table recognition usually assumes identified table

regions and the goal is to find the physical structure

and the logical structure of the table model [9, 21, 8].

Lots of work deals with machine-printed table recogni-

tion [10, 3, 7]. Gatos et al. [7], make use of the com-

plete table rulings to recognize the table structure while

Hirayama [10] relies on dynamic programming (DP) to

align table columns. Richarz et al., recently propose a
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Figure 1: A sample document containing a table.

method of tabular structure recognition for their semi-

supervised transcription system in handwritten histori-

cal weather reports [15]. Making use of the pre-printed

table substrate, they use the Hough transform to de-

tect the horizontal and vertical rulings that constitute the

tabular structures.

In this work, we try to detect and recognize tabu-

lar structures simultaneously and decompose them into

2-D grids of table cells. To focus on modeling of the

tabular structures, we start the processing with manu-

ally labeled documents. Next, we detect “key points” at

the intersections of white streams within text lines and

between text lines. Then, we make use of hand-drawn

rulings to validate key points, and then generate imag-

inary key points around missing cells to form regular

grids. Finally, we extract structural features from the

grids and employ the Min-Cut/Max-Flow algorithm to

decide the most probable key points in tables.

For the rest of this paper, we first describe the anno-

tation rules and the inputs for our experiments in Sec-

tion 2. Next, we introduce the idea of key points, the

rationale behind it, and an algorithm for detection in

Section 3. Then, we model the table structures as 2-D

grids of key points and introduce the structural features

that are used in the Min-Cut/Max-Flow algorithm, in

Section 4. Finally, we describe the experimental setup

and results in Section 5 and conclude in Section 6.

2. Document Annotation

We start processing with manually labeled words us-

ing oriented rectangles because there is no need to rein-

vent the wheel: (1) there is a large amount of exist-

ing techniques to segment text lines, words (e.g., [18]);

(2) pre-printed rulings lines may be detected by existing

methods as well (e.g., [4]);

Using GEDI [6], we labeled rulings and words with

oriented rectangles and associated “run-length encoding

(RLE)” was automatically recorded, which can further

be decoded into a sequence of pixel points. In addition,

we grouped text within the same line to make use of

correctly segmented text lines for key point detection.

We labeled pre-printed rulings and hand-drawn rulings

differently because the latter represents the author’s in-

tent of organizing and isolating table components from

the other parts of a document.

3. Key Point Detection

The idea of key points resembles the idea of inside-

space in Hu et al.’s work on table detection [11] where

inside-space means the white space between two text

blobs. However, it differs in that key points reside in

between two text lines and thus offer more structural

information about neighboring text lines. See Figure 2a

for an example of key points. As we can see, a key

point is indeed a local region in which any horizontal or

vertical cuts will not affect the table cells. Thus, in the

following discussion and demonstration, we use a cross

sign to represent a key point – the height and the width

define the local rectangular region.

One important question is what the minimum width

of a key point should be? Small width will introduce

many false-alarming key points since the inter-word

spacing in plain text lines will be captured. On the other

hand, large width will suppress the key point detection

in tables. We estimate the threshold spacing W by as-

suming the inter-word spacing Z = {z1, . . . , zn} fol-

lows a bimodal distribution, where one Gaussian repre-

sents the inter-word spacing in plain text lines, and the

other the spacing between table columns:

p(z) = π1N (µ1,Σ1) + π2N (µ2,Σ2) (1)

where πi is the weight between two Gaussian distri-

butions and πi = 1 is set in our experiments. Given

the inter-word spacings collected from each page, we

employ the Expectation Maximization (EM) algorithm

to find the maximum-likelihood estimates of all the pa-

rameters in µi and Σi [1]. EM is an iterative procedure

with two steps. At the Expectation-step, we compute

the probability λik of sample k belonging to Gaussian i

using the current model parameters:

λik =
Ni(z;µi,Σi)

∑2
j=1Nj(z;µj ,Σj)

(2)

At the Maximization-step, the model is updated using

the computed probabilities from the Expectation-step:

µi =

∑n

j=1 λikzk

λik

(3)
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Figure 2: Key point detection and validation using hand-drawn rulings.

Σi =

∑n

j=1 λik(zk − µi)(zk − µi)
T

∑n

j=1 λik

(4)

To facilitate parameter estimation with limited number

of samples (usually less than 100 in a page), we set the

covariance matrix Σi to be γiI, i.e., an identity matrix

with a scaling factor. In addition, the K-Means algo-

rithm is employed to initialize the model. After the EM

estimation, we setW = µ1 + 2
√
γ1, assuming N1 rep-

resents the inter-word spacings in plain text lines. Fig-

ure 3a shows some detected key points.

3.1 Hand-drawn Ruling Impact

After detecting all key points, we make use of hand-

drawn rulings to confirm or exclude them. For vertical

ones, they usually indicate text separation. For hori-

zontal ones, however, they may indicate concatenation

of adjacent text lines, or separation of table rows from

plain text lines. Thus, we classify horizontal rulings

into separating ones and connecting ones, based on the

crossings and T-Junctions, as shown in Figure 2b:

i) Separating rulings always have T-Junctions only

while connecting rulings should have at least one

crossing, as shown in Figure 2c.

ii) If there are multiple hand-drawn ruling segments

approximately on the same horizon, then such rul-

ings are classified as connecting rulings, as shown

in Figure 2d.

In addition, we also observe that a separating hand-

drawn ruling followed by a connecting one usually in-

dicates the region for table column headers. For table

headers, it is possible for people to write the headers in

multiple text lines due to space constraints (Figure 2c).

In such cases, it is better not to segment table headers by

their physical appearance, but to preserve their logical

meaning. Therefore, we group text lines in such regions

during table row detection.

Moreover, if any vertical hand-drawn rulings inter-

sect handwritten words, we segment them by building

a local horizontal projection profile (HPP) and finding

a max-margin cut between two neighboring words. If

two words are horizontally isolated such that the HPP

can not generate a reasonable cut, the average x-value

of two end points in the vertical ruling is used.

Assuming a hand-drawn ruling traverses through a

key point region, it has several impact:

i) Vertical hand-drawn rulings can validate key points

with widths smaller thanW .

ii) Connecting rulings can validate key points with

heights larger than the average spacing between

text lines L.

iii) Separating rulings can in-validate key points with

reasonable heights, e.g., approximately L.

Green cross signs in Figure 3b are validated key points.

3.2 Key Point Grid Generation

This step is necessary when several tables cells are

missing such that associated key points are missing or

wrong. First, we cluster key points into groups using the

Basic Sequential Algorithmic Scheme (BSAS) cluster-

ing [19]. Next within each cluster, we build a HPP of

key points to find salient columns of key points. Then

we traverse each row of key points to see if any key

points are missing at expected positions. If so, we add

imaginary key points correspondingly. In cases where

a key point spans over two columns of key points (Fig-

ure 3b), we split it into two. See Figure 3c for the 2-D

grid of key points where orange cross signs are imagi-

nary key points (KIs), and green ones are validated key

points (KRs). After generating grids of key points, we

validate them by the graph model, as discussed in the

following section.

4. Graph Model for Tables

Conditional Random Fileds (CRFs) are discrimi-

native graph models for labeling tasks such as text
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(a) Key points detected by considering the inter-word spacing. (b) Green key points are validated by hand-drawn rulings.

(c) Merged key points are split to match the grid pattern. (d) Key points detected by the graph cut algorithm.

Figure 3: Snapshots of key points in different stages.

stream identification and document image segmenta-

tion [13, 17, 14]. Denote X = {xi} to be the observed

features from each node in the graph, and Y = {yi}
to be random variables over corresponding labels, i.e.,

0 means false-alarming key points and 1 means valid

ones. Then the joint distribution over the labels yi given

an observation xi has the following form:

p(yi|xi) ∝ exp(pA(yi, X) + q
∑

{(i),(j)}∈E

I(yi, yj , X))

(5)

where A(·) is called the association potential measuring

data penalty scores, and I(·) is the interaction potential

measuring influences of neighboring nodes. Figure 4a

shows the CRF topology in our experiments. It turns

out that the maximization problem of p(yi|xi) can be

solved by the Min-Cut/Max-Flow algorithm [2], where

valid key points are associated to the source node and

the rest to the sink node, as shown in Figure 4b.

In our work, we define A(yi, X) to be:

A(yi, X) =
∑

j∈CN

ColFeat(j)

exp(−R(CN))
+

∑

j∈RN

RowFeat(j)

exp(−1)
(6)

where CN means all the nodes in the same column and

R(·) counts the number of KRs in the column. RN

means the immediate left and right neighboring nodes.

In our experiments, both ColFeat(·) and

RowFeat(·) generate single-value features. De-

note w as the width between two vertically adjacent key

points on the same column, and w the average width in

the column. Then ColFeat(·) is computed as:

ColFeat(KR) =

{

0 if w < w

1 otherwise

ColFeat(KI) =

{

−1 if w < w

0 otherwise

RowFeat(·) is computed by finding handwritten words

between two horizontally adjacent key points on the

same row:

RowFeat(·) =
{

1 if any HW words exist

0 otherwise

After computing association potentials for each node

in the graph, we define the source capacity of a node to

be A(yi, X) and the sink capacity to be 1 − A(yi, X).
If the source capacity is positive, the initial label for the

node is 1, otherwise it is 0. Based on the initial labels,

we can compute the interaction potential as follows:

I(yi, yj , X) = exp(yi × yj) (7)

The parameters p and q adjust the weights of associ-

ation potential and interaction potential. Ideally, these

parameters should be learned from a training dataset.

Due to the small-scale dataset we have for now (which

is actively growing), however, we are unable to train

the model extensively. Thus, in current experiments,

we manually set the weights to be equal.
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(a) The topology of CFRs used in experiments. Note all the nodes

within the same column have impacts on the central node, while

only the immediate left and the right neighboring nodes have.

Source

Cut

Sink

(b) The graph model in Min-Cut/Max-Flow algorithms. Each

node represents a hidden node in the CFRs. The arrows repre-

sent the flow directions of each node.

Figure 4: Table models used in our experiments.

An example result is shown in Figure 3d. With all

the key points computed by the CRF model, the table

region is defined by the bounding box that contains all

the associated table rows. Having grouped key points

into columns, we group text to table columns so that we

get a 2-D grid of table cells.

5. Experiments

5.1 Data Preparation

We collected machine-printed documents that con-

tain tables from the Tobacco800 dataset [20] and asked

students to copy from these documents to paper. Stu-

dents chose where to break lines, the spacing between

words and table columns, paper sheets, and writing in-

struments. To mimic the characteristics of handwritten

tables, we added/removed rulings in tables and left cer-

tain cells empty. As an ongoing event, so far we have

collected 20 handwritten pages from two students, and

we aim for a dataset with 200 pages or more.

Each collected handwritten document was scanned

at 600 DPI into PDF files, using an HP copier with the

bitonal setting under the plain text mode. The dimen-

sion of extracted TIFF images is 5100w × 6600h.

5.2 Experimental Results

Figure 3 shows some results during the tabular struc-

ture detection and recognition. Currently, the perfor-

mance evaluation is based on manual investigation. We

have labeled 584 table cells (369 key points) from 20

pages with 22 handwritten tables. If a cell is properly

defined by its neighboring key points, we consider it a

valid table cell. Then, we compute the cell precision

and cell recall, as well as the key point precision and

key point recall. For both cell precision and key point

precision, we obtained a 100% accuracy. While for cell

recall we obtained 93.3% and key point recall 93.0%.

In terms of running time, our algorithm completed an

image in less than 10 seconds on a Quad-core Intel 3.0

GHz machine, and we have not make an effort to opti-

mize the execution yet.

More errors occurred when no hand-drawn rulings

presented and some table rows are vertically isolated

from the others. In addition, when the spacings between

table columns varied too much, small spacings were

mistakenly classified as inter-word spacings in plain

text lines such that several key points were missing.

Although the precision/recall measures are intuitive

and commonly used in literature, we consider them

still difficult to show “how well” the system performs.

Eventually, we want to measure how well the algorith-

mic results are consistent with a human user’s percep-

tion. This is left for future work.

6. Conclusions

In this paper, we introduced a graph model based ap-

proach of detecting and decomposing tabular structures

in noisy handwritten documents. First, we detected key

points between two text lines and made use of hand-

drawn rulings to validate/exclude them. Then, we built

a 2-D grid of key points to model tabular structures and

to compute structural features in the graph. Finally, the

Min-Cut/Max-Flow algorithm validated key points in

the grid globally. Experiments on 22 tables which con-

tain 584 table cells showed a cell precision of 100% and
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a cell recall of 93.3%.

As for the future work, more documents will be col-

lected, annotated, and tested. The goal is to obtain

a dataset with 200 samples or more. In addition, we

plan to design more discriminative structural features

for training and testing in the graph model.
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