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Abstract—This paper tackles the stroke recovery problem,
which is a typical ill-posed reverse problem, by an instance-
based method. The basic idea of the instance-based stroke re-
covery is to refer to the drawing order of a similar instance. The
instance-based method has a strong merit that it can deal with
multi-stroke characters and other complex characters without
any special consideration. However, it requires a sufficient
numbers of instances to cover those various characters. As an
initial trial of the instance-based stroke recovery method, this
paper describes the principle of the method and then provides
several experimental results. The experimental results indicate
the potential of the proposed method on recovering the drawing
order of complex characters, as expected.

Keywords-handwriting; stroke recovery; instance base; time
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I. INTRODUCTION

Stroke recovery is a technique to estimate the drawing

order of a given handwritten character image. For example,

for a handwritten image of “x”, a correct stroke recovery

result is “>”→ “<” (where both strokes are written in

the top-to-bottom direction). Similarly, for “�”, a correct

result is “∖”→ “/”. Stroke recovery is a typical inverse

problem and therefore it is difficult to obtain correct results.

The above examples of two similar characters “x” and “�”

clearly indicate how the problem is difficult.

For single stroke characters, like “�”, the recovery method

based on graph theory [1] seems promising. This method

relies on a simple but effective algorithm, called basic trace

algorithm. Starting from one of two end points of a single

stroke character, the algorithm traces the stroke and if it

encounters an intersection (a node of degree 4), it just takes

the center way. Even this simple algorithm, it can recover

the stroke order of single but complex stroke characters,

such as “&”. However, it has several limitations. First,

it requires special treatments on double-traced lines, such

as the vertical stroke of “d”. Second, it cannot determine

the global writing direction. For example, it is essentially

impossible for the method to determine whether “�”-shaped

single stroke is written from top or from bottom. Third,

it cannot deal with multi-stroke characters. Therefore this

elegant method cannot deal with “x” and “�”. Most of

other existing methods, such as [2], [3], [4], have the same

difficulties because they also formulated the stroke recovery

problem as a trace problem.

Exceptionally, Qiao et al. [5] proposed a method which

can recover the stroke order of multi-stroke characters. Their

method is a kind of model-fitting methods [6], [7], where

a one-dimensional stroke model is fitted nonlinearly to a

two-dimensional input image. Since the drawing order of the

model is known, the fitting result directly shows the recovery

result. One drawback of this method [5] is its difficulty to

control the relationship among strokes. (For example, any

pair of two strokes should not be fitted to the same stroke

on the image.) In addition, variations of stroke order and

stroke number are not considered. Consequently, must be

designed an individual model for each of those variations.

This paper tackles this difficult stroke recovery problem

by a simple but novel approach, that is, an instance-based

approach is proposed. The principle of this approach is to

consider that the more similar two character images become,

the more similar their drawing order is. Therefore, if we

have a large number of character images with their true

drawing order as an instance set, a reliable recovery result of

an input image canbe obtained by referring to the drawing

order of the most similar instance. As we will see later, the

method is formulated as an optimal path problem, where a

path represents a sequence of removing the black pixels one

by one from the input character image.

One important merit of the instance-based approach is that

it can deal with multi-stroke characters and other complex

characters without any special consideration. Theoretically,

just by adding instances of multi-stroke characters, we

can refer to them for the stroke recovery of multi-stroke

character images.

We need a sufficiently large number of instances for a

good-enough recovery result. This is because the proposed

method needs a similar instance even for severely deformed

input image. In our experiment, about 15,000 instances of

10 digit classes were used for showing that more instances

are necessary for better recovery accuracies.

This research has been inspired by recent “big data”

researches in image processing and pattern recognition.

Those researches have proved that even the simple nearest

neighbor methods can provide very good performance for

complex tasks if a large instance set is available. For

example, in [8], 80-million tiny images were used in nearest

neighbor-based recognition. Visual object segmentation has

also been tackled with a large instance set [9]. A large
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ground-truthed video data set has also provided and utilized

for scene understanding [10], [11]. The proposed stroke

recovery method is considered as a method of inferring an

image sequence to reach the input character image by using

a large instance set.

II. BASIC IDEA OF INSTANCE-BASED STROKE

RECOVERY

As mentioned above, the basic idea of instance-based

stroke recovery is to refer to the drawing order of a similar

instance. One may simply consider to use the drawing order

of the similar instance “directly” as the recovery result.

However, this simple method is obviously irrelevant. This

is because such a result shows the drawing order of the

instance and does not indicate that of the input1.

The above observation explains an important fact that

possible drawing orders are strictly constrained by the input

image. Consider an input image of “3”. Our goal is to

estimate the optimal sequence of “intermediate” images

from an empty image to the completed image “3”. Each

intermediate image is constrained so that its black pixels

should be a subset of the black pixels of the input image

“3”. Therefore, if “3” contains 10 black pixels, there are up

to 210 intermediate images which satisfy the constraint, and

the stroke recovery result is one of the ordered sequences of

those images.

Figure 1 illustrates our stroke recovery problem. This

is an image space and thus an instance (a sequence of

intermediate images) is represented as a continuous trajec-

tory. The problem is to determine the optimal trajectory

from the input image to the empty image (the origin)

while referring to instances. The green area shows the set

of all possible intermediate images for the input image.

Thus, the optimal trajectory should be included in this area.

Considering “instance 1” is of the most similar image, the

above simple method fails because the trajectory of instance

1 is not included in the green area.

Instances are used in the criterion to determine the optimal

trajectory. In fact, there are 10! possible recovery results

for the input image with 10 black pixels. For selecting

the best results among them, instances are used. Roughly

speaking, a trajectory which always keeps some proximity

to one or more instances is a good trajectory. In other words,

every intermediate image of the recovery result should

have a similar image in the instance set. Consequently, the

proximity (or, inversely, the distance) accumulated along

the recovery result is the criterion for selecting the optimal

result.

1If we can find the exactly same instance in the database, we can use the
drawing order of the instance directly as the result. Of course, we cannot
expect such an optimistic situation, which requires almost infinite instances.
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Figure 1. Basic idea of instance-based stroke recovery.
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Figure 2. Preparation of instances.

III. DETAILED RECOVERY PROCESS

The instance-based stroke recovery method is organized

in a three-step manner, that is, preparation of instances,

preprocessing and optimal drawing order estimation. In the

following, those steps are detailed.

A. Preparation of Instances

An instance is a sequence of intermediate images of

character drawing processes and created from an on-line

handwritten character data. Figure 2 illustrates a process of

creating an instance “9”. An intermediate image is created

by so-called “inking” process, where the pen-tip movement

from t = 0 to t′ is converted into a black-ink trajectory on

a bitmap image with an appropriate ink width. Hereafter,

consider t′ = 0, �, 2�, 3�, . . . , T − �, T . Consequently, T/�
intermediate images are created with the regular interval � .

The larger � is, the rougher the instance becomes. Figure 3

shows several examples of instance images. The instances

of (a) are written by the general stroke order and (b) are

written by a rare order.

B. Preprocessing

We perform preprocessing to convert the input image as

a set of line segment. Letting N denote the number of

segments, we will consider the stroke recovery problem

as a problem to find the optimal order of removing N
line segments one by one from the input image. Although
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(a)

(b)

Figure 3. Sample of instances.

Figure 4. Example of segmentation.

individual pixels are considered as a unit of removal in

Sections I and II, line segments are a better unit from the

viewpoint of computational efficiency and accuracy.

Figure 4 shows a segmentation result (N = 5) provided by

the following method. First, intersection points are detected

and then the black ink strokes are cut at those points.

Second, the obtained line segment is further divided at the

halfway point if the segment has a high curvature or a

long length. Finally, a very short line segment is combined

with its nearest neighbor segment. Note that it is difficult to

apply this combination process for all short line segments

because some of them are important. Consequently, we

cannot remove all noisy short line segments, that badly affect

recovery accuracy as we see later.

C. Optimal Drawing Order Estimation

For determining the globally optimal order of removing

N line segments, we will formulate the problem as an

optimal path problem on a cube graph. The simple brute-

force search requires O(N !) computations for examining

all possible permutation of N segments. In contrast, the

following algorithm on the cube graph requires O(2N )
computations, which is far less than O(N !). This efficiency

comes from the fact that the algorithm, called cube search

[14], is based on dynamic programing search on the cube

graph.

Figure 5 illustrates the formulation of the stroke recovery

problem as an optimal path problem on the cube graph. As

noted above, if we have N line segments, the number of

the possible intermediate images are 2N and thus the cube

graph has 2N nodes. Figure 5 illustrates the cube graph for

“5” with N = 4 segments and it is comprised of 16 nodes

divided into 5 layers. The k-th layer contains NCk nodes,

each of which corresponds to an intermediate image with k
missing segments. Note the first and the last layer contains

the start and the end nodes corresponding to the input image

and the empty image, respectively.

Any path between the start and the end nodes represents

one possible removal order. Therefore if we add any appro-

priate cost on every edge of the graph, the stroke recovery

problem is converted into an optimal path problem on the

cube graph. As noted above, the optimal path can be found

with O(2N ) computation.

The remaining factor to complete this optimization prob-

lem is the design of the cost, (or say the objective) function

of the problem. In this paper, we add a cost to each node

of the graph. As mentioned in Section II, each node, i.e.,

each intermediate image on the path should have a similar

image in the instance images. Thus, we define the node cost

as the minimum distance to the instance images. The cost

becomes smaller if there is a similar intermediate image in

the instance set. Consequently, we can expect the optimal

recovery result, all of whose intermediate images are as

much as similar to the instances.

There are two variations in the cost evaluation. Hereafter,

we will call them Method A and Method B.

∙ Method A The minimum distance image is always

searched in the whole instance set. Thus, the minimum

distance images can come from different instances at

individual nodes. For example, the upper part of an

instance of “3” and then the lower part of an instance

of “2” can be combinatorially used for an input image.

Since any combination is allowed, Method A disregards

the original writing order of the instances.

∙ Method B The minimum distance image is searched

only from the intermediate images of a single instance,

which is created by the most similar (completed) char-

acter image to the input images. In other words, first,

the nearest neighbor instance (say an instance of “3”)

is searched for and then along the instance the path

on the cube graph is optimized. Note that Method

B is different from the simple method introduced in

Section II as an inappropriate method.

Chamfer distance [15] is used for measuring the node

cost, i.e., the distance of two (intermediate) images. Chamfer

distance is defined as follows. First, edge and distance

transformation images are created from two binary images:
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Input

Figure 5. Instance-based stroke recovery as an optimal path problem.
(N = 4.)

the input image and an instance image. Second, the sum of

distance value on the edges is counted by overlapping them,

and then the sum is divided by the number of edge pixels.

IV. EXPERIMENTAL RESULTS

A. Datasets

The following experiment was conducted with on-line

character patterns extracted from the Unipen database, which

contains 15,953 samples in total. From those samples, 16

different instance datasets were prepared by changing a

parameter � as 2, 4, 8 and 16 at the inking process and

the number of the instances M as 10, 100, 1,000 and

10,000. Specifically, the largest instance dataset (� = 2 and

M = 10, 000) contains 397,290 intermediate images, and

the smallest (� = 16 and M = 10) contains 46 images. As

test patterns, other 1,000 samples were extracted from the

same Unipen database and then converted as 1,000 images

through the inking process. The number of line segments

per pattern, N , varied from 2 to 17 and its average was 5.9.

Each instance had no class information. Consequently, all

of the instances from any class can be used for any input.

This was a very general condition because it is not necessary

to know the class of the input. As shown in Section IV-D, it

was observed experimentally that if the instances are limited

to the class of the input pattern, the recovery accuracy was

increased.

B. Evaluation Criterion

Since each test pattern (i.e., the input image) was created

from on-line characters, its correct drawing order has been

known. If a recovery result is exactly the same as the correct

drawing order, the result will be considered as successful

one. This criterion is very strict. For example, if the order

of two line segments is interchanged and the order of the

remaining N − 2 segments is correct, it was counted as

a failure result. Another precise evaluation criterion, called

Kendall distance [16], is also used and discussed later.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 6. (a)–(f) sample of correct estimation and (g)–(j) incorrect
estimation. In each lines, upper parts are recovery result and lower parts
are reference images.

C. Qualitative Evaluation

1) Successful Results: Figures 6 (a)–(f) show successful

recovery results under � = 2 and M = 10, 000. In each line

of this figure, the upper part is a recovery result by Method

A and the lower part is the corresponding nearest images

from the instance set. The input image is at the upper right

end.

Figures 6 (a) and (b) show that the proposed method can
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recover a drawing order using similar instance images. Even

for those simple inputs, conventional method needs special

considerations. In fact, the input image of (a) contains a

double-traced line, and (b) has no end clear point. Conven-

tional recovery methods need start and end points and thus

have difficulty to deal with (b). The proposed method does

not have such a problem.

Figures 6 (c) and (d) are recovery examples of multi-

stroke characters. As mentioned before, only a few of

the existing methods can deal with multi-stroke characters.

Especially, (d) has only two end points and thus some

conventional methods will misunderstand that it is a single

stroke character. Our proposal could recover their drawing

orders correctly just by referring instance without any special

considerations. In addition, Figure 6 (e) shows a result of a

stroke recovery for a character written by irregular order and

stroke number. The proposed method is capable of recover-

ing irregular strokes, if the dataset contains corresponding

instances.

Figure 6 (f) shows an example that was recovered success-

fully by Method A but failed by B. This “3” has a particular

shape around its upper right corner and there were few “3”s

like it in the dataset. Method A, however, combined several

instances (“7” and “3”) and finally had the correct result.

Note that Method A also combined several instances for (d)

and (e). Method B uses the single (nearest) instance and thus

difficult to deal with the input pattern largely deviated from

the instances.

2) Failure Results: Figures 6 (g)–(j) are examples of

failure recovery results. Figure 6 (g) shows a result whose

recovery images are very similar to the referred instance

image but its recovery result is erroneous. Although the

input “2” is drawn from upper to lower like popular drawing

order, the estimated order chose the stroke to start from the

halfway point. Method A sometimes encounters this problem

as the side effect of its ability to combine multiple instances

regardless of their original drawing orders.

Figure 6 (h) shows a failure result where wrong estimation

happened around a very short line segment (pointed by the

green arrow). Since the cost by a short segment is small,

its order often becomes unstable. The failure of Fig. 6 (i)

was caused by the combination of multiple instances from

different classes. An instance of “6” was partially used for

“8”. The failure of Fig. 6 (j) was caused by the lack of

appropriate instances. The proposed method totally relies

on similarity of the input image to instances and therefore

cannot estimate the correct drawing order without them.

D. Quantitative Evaluation

Table I shows the successful recovery rates for each pair

of M and � . Considering the evaluation criterion of IV-B is

very strict, this result suggests the possibility of the instance-

based stroke recovery. Note that the latter evaluation with

Table I
RECOVERY ACCURACY(%).

EACH CELL SHOWS RATES OF METHODS A AND B.

M = 10 100 1,000 10,000
� A B A B A B A B

2 22.1 20.7 28.8 31.8 39.8 44.7 41.8 51.7

4 21.9 21.1 29.4 32.0 39.6 44.6 42.1 51.2

8 21.0 20.8 27.8 31.0 38.1 43.0 42.5 51.0

16 20.0 17.4 25.4 25.8 34.5 33.0 38.5 37.2

Kendall distance [16] reveals that recovery error often hap-

pens only locally.

Since the experimental result indicates that the accuracy

increases as the number of the instances M increases, the

effect of using large instance was confirmed in a quantitative

viewpoint. The same effect is more significant in Method B.

Method A also shows a positive but limited effect because

of the increase of failures like Fig. 6 (g).

An additional experiment with Method A was also con-

ducted, where referable instances were limited. Specifically,

for example, if the input image is “0”, only the instances of

“0” were used. Although this limitation reduces the number

of referable instances to about M/10, the success rates were

21, 30, 45 and 50%, respectively, at M = 1, 10, 100, and

1, 000, respectively , under � = 2. This improvement implies

that similar instances of different classes often have a bad

influence, as shown in Fig. 6 (i). Note that this condition

at M = 1 is similar to the condition of the fitting-based

recovery method like [5], because the method relies on a

single model from the same class.

Table I shows that the value of � has a little effect

for Method A. Method A can compensate the decrease

of instance variations according to the increase of � by

combining multiple instances. On the other hand, � has a

larger effect for Method B, which cannot combine different

instances.

Figure 7 shows the distribution of the recovery cost, which

is the accumulated cost along the optimal path. As expected,

the cost becomes smaller as the instance set becomes larger.

This indicates that a more similar instance image can be

found at each node of the cube graph.

Figure 8 shows the distribution of Kendall distance [16] of

each recovery result. Kendall distance (or so-called bubble-

sort distance) can evaluate how the estimated order is dif-

ferent from the correct order. Specifically, like edit distance,

Kendall distance evaluates the number of steps to convert

the estimated order to the correct order by swapping the

neighboring order values. Then, by normalizing the number

of steps by its maximum N(N−1)/2, Kendall distance takes

a value between 0 and 1. For example, Kendall distance is

2/(N(N − 1)) for the pair 1-3-2-4-5 and 1-2-3-4-5 and,

4/(N(N − 1)) for the pair 1-3-4-2-5 and 1-2-3-4-5.

In Fig. 8, most Kendall distances take a smaller value

around 0 ∼ 0.2. Therefore the recovery error happened
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locally. (Assume a typical erroneous result 2-3-1-4-5-6 for

N = 6. This happens especially when the first line segment

“1” is very short. Kendall distance of this case is 0.13.)

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a stroke recovery method by

using large instance image datasets. For more than 50%

of handwritten digit character images with various drawing

orders and shapes, we could have a good recovery result. Es-

pecially, it should be emphasized that the proposed method

can deal with multi-stroke characters without using any extra

rule or complex writing model. It was also confirmed that

more instances provide better recovery accuracy.

For better recovery accuracy, future work will focus on

(i) the improvement of distance metric to the instance,

(ii) the use of the original temporal information of the

instance, (iii) the improvement of line segmentation (sup-

pression of noisy short line segment) and (iv) instance

selection. In addition, we should not forget that there is an

inevitable limitation in stroke recovery — if there are the

exactly same patterns drawn in different orders, none can

provide perfect estimation. This fact indicates that we need

other criteria which evaluate the performance more fairly.
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