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Abstract—One obstacle in the automatic analysis of hand-
written documents is the huge amount of labeled data typically
needed for classifier training. This is especially true when
the document scans are of bad quality and different writers
and writing styles have to be covered. Consequently, the
considerable human effort required in the process currently
prohibits the automatic transcription of large document col-
lections. In this paper, two semi-supervised multiview learning
approaches are presented, reducing the manual burden by
robustly deriving a large number of labels from relatively
few manual annotations. The first is based on cluster-level
annotation followed by a majority decision, whereas the second
casts the labeling process as a retrieval task and derives labels
by voting among ranked lists. Both methods are thoroughly
evaluated in a handwritten character recognition scenario using
realistic document data. It is demonstrated that competitive
recognition performance can be maintained by labeling only a
fraction of the data.

Keywords-document analysis; semi-supervised annotation;
multiview learning; handwritten character recognition;

I. INTRODUCTION

Training pattern recognizers typically requires large

amounts of manually annotated samples in order to cap-

ture the characteristics of the data. In offline handwriting

recognition, where characters may exhibit large variations

in appearance due to different writers and writing styles,

and no temporal information is available to aid the task, this

problem is especially severe. Therefore, offline recognizers

typically need to be adapted or retrained to facilitate new

writers and scripts. Consequently, the burden involved in

labeling large sample sets is recurring.

In museums and archives, large collections of handwritten

documents exist that are of great potential interest for histo-

rians and scientists. Thus, there has been considerable effort

to digitize them. However, ideally, the scanned document

images should be fully transcribed in order to enable fast

searching, browsing, efficient storage, and complete auto-

matic analysis. Today, the transcription is still mostly done

manually, which is a very laborious and tiresome task, and

only insignificant numbers of documents can be processed

this way. Nevertheless, the lack of sufficiently reliable gen-

eral offline handwriting recognizers and the amount of effort

that has to be spent in training them currently prohibits fully

automatic processing of such collections.

The focus of this paper is thus not primarily to investigate

features or techniques for handwritten character recogni-

tion, but to develop methods that help in annotating large

amounts of data efficiently. Suppose it is possible to label

large databases with sufficiently small manual effort, say, a

few hundred manual operations to label several thousand

samples. Then, even the repeated training of classifiers

specialized on some specific writer or script may become

feasible. It can be expected that such a specifically trained

recognizer will perform better than a general one, that has

to cover the variations of largely differing writing styles.

Therefore, two methods are presented that greatly re-

duce the required manual effort in labeling by adopting

approaches from the field of semi-supervised and multiview

learning (cf. e.g. [1]), utilizing a voting scheme over different

feature representations of the data in order to increase

reliability. The first method is based on clustering. Clusters

are annotated as a whole and reliable labels are determined

by performing a majority voting procedure. The second casts

the labeling problem as an interactive retrieval task, and also

relies on a majority vote between ranked lists in order to

derive the final labels.

The remainder of this paper is organized as follows: First,

the problem statement is provided and related literature is

shortly reviewed in the process. Afterwards, the proposed

semi-supervised labeling methods are explained in detail.

The paper concludes with a detailed experimental evaluation,

where the applicability of both methods is demonstrated on

a set of handwritten documents.

II. PROBLEM STATEMENT

In offline handwriting recognition, the large variability

of character appearances over different writers and styles

poses a challenging problem. Consequently, the error rates

obtained in multi-writer recognition scenarios are typically

high (cf. e.g. [2]). Existing recognizers thus are often re-

strained to a single writer (cf. e.g. [3], [4]). While there

exist successful approaches for automatic keyword indexing

in document collections (cf. e.g. [5], [6]), the automatic
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transcription of handwritten documents still remains an open

problem. Generally, recognizers can only perform reliably on

data similar to the training data, and have to be adapted or re-

trained when applied to a new data domain. Consequently,

the amount of human effort required to collect sufficient

ground truth data for training becomes prohibitive for appli-

cations outside the academic field.

Thus, it is worthwile to develop methods that reduce this

labeling effort, making the recurring training of writer- or

collection-specific – and, thus, more reliable – classifiers fea-

sible for large and diverse collections. We seek to contribute

in this field by presenting approaches for efficient labeling of

large data sets, adopting ideas from semi-supervised learning

to alleviate the required manual effort.

The general idea of semi-supervised learning (cf. e.g. [1])

is to operate on both labeled and unlabeled data. Specifically,

semi-supervised classification is the problem of training a

classifier when only a small part of the data is annotated

and the (typically) vast majority of data labels is unknown.

Consequently, known labels must be robustly propagated

to the unknown data by using unsupervised techniques. In

order to achieve this, we adopt the concept of multiview

learning. Here, an ensemble of learners is trained, each

having a different view on the data (for an overview of

ensemble methods, cf. e.g. [7]). Decisions are then obtained

by combining the outputs of the different learners, e.g. by

majority voting. Some concepts used in this work are also

related to active learning (cf. e.g. [8]), where the learner

actively selects the data that should get annotated based on

its current knowledge in a feedback loop.

The problem of propagating labels to large corpora from

just a few annotated instances has been studied extensively

in the field of semantic image retrieval (cf. e.g. [9], [10]). In

[11], it is shown that the recognition rate of a handwriting

recognizer can be improved using a self-learning strategy on

unlabeled adaptation data. In [12], character annotations are

derived from word-level ground truth by optimizing segmen-

tation hypotheses in an unsupervised manner. However, the

initial set of word annotations must be provided manually.

III. PROPOSED METHODS

In the following, we outline the proposed semi-supervised

multiview methods for efficient labeling in a general manner.

Concrete realizations and parametrizations will be presented

in section IV.

A. Clustering-based annotation (CBA)

In our previous work [13], a multiview labeling method

requiring minimal human effort was proposed. We slightly

enhance this method in the following, and provide a more

throrough evaluation. The idea behind the method is simple:

Label as few samples as possible and automatically infer the

labels for other samples that are similar. Here, similarity is

defined by applying a clustering algorithm.

The labeling process consists of three major steps. First,

an ensemble of data representations is created, providing

alternative views of the data by using different types of

features. Then, each representation is clustered into kj
clusters, where kj may differ for each representation. Further

diversification is achieved by applying different clustering

algorithms. The result is a set of r different data setups

Rj , j = 1...r , i.e. alternative combinations of features and

clustering algorithms.

Given a set of clusters, only the centroids are labeled

manually, and the rest of the samples in the cluster inherit

the label. This implies
∑

j kj manual operations, and yields

r independent labels for each sample.

Inheriting labels from cluster centroids will result in some

incorrectly labeled samples, since, generally, the clusters are

not pure. Thus, the final step of the procedure is to determine

which labels are reliable. Assume that the labels are given

as d-dimensional binary vectors [li,1, . . . , li,d]
T ∈ {0, 1}d,

i = 1, . . . r, where li,j = 1 if a sample p is assigned to class

ωj in setup Ri, and 0 otherwise. Applying a majority voting

procedure results in an ensemble decision for a specific class

label ωmax
k . A threshold κc on the ensemble decision is used

to select only those samples where the class membership is

determined with high agreement:

ωmax
k = max

k

r∑

i=1

li,k ≥ κc. (1)

In the following, we only retain samples for which all votes

agree on the same label (unanimity vote), i.e. κc = r. Finally,

the subset of samples and assigned labels that is retained

from the above procedure is used to train a classifier. This

classifier can then be used to either re-evaluate the training

data (inductive learning) or classify a test set of unknown

data (transductive learning).

B. Retrieval-based annotation (RBA)

The second proposed method is based on interactive

retrieval, and is related to pool-based active learning with

relevance feedback (cf. e.g. [14]). However, it differs in a few

important aspects from this paradigm. Most importantly, we

want to retrieve labels for all possible classes (quasi-) simul-

taneously. Additionally, selecting relevant samples manually

from a potentially very large retrieval list counteracts the

goal of lessening the burden for the annotator. Consequently,

the manual relevance feedback step is replaced by a simple

automatic selection rule on the retrieval list, propagating the

annotation to unlabeled samples. Since incorrectly assigned

labels will occur in this stage due to irrelevant samples

in the list, a multiview voting concept taking into account

several retrieval runs is integrated. The intuition behind is

that, if multiple runs for the same query in several data

representations agree on a subset of samples, then those

belong to the query class with high confidence. Figure 1

gives an overview of the proposed procedure.
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Figure 1. Overview of the proposed retrieval-based annotation process.

Let X = {Xi, i = 1...n} be a pool of n unlabeled data

samples , Xi = {xij ,ui,vi, ni, j = 1...r}, where xij is

the i-th data sample’s j-th feature representation, ui is a

variable-length vector of class labels (empty on initializa-

tion), vi is a vector of confidence scores associated with

each label in ui, and ni is the number of times the sample

has been considered. Also, let T = {Xk, yk, k = 1...m}
be an initially empty pool of trusted samples, with the k-th

sample’s final label yk.

First, a sample Xs is selected from X . Since no infor-

mation is available in the first iteration, this selection is

random. In further iterations, only the subset X̂ of samples

with minimum value of ni is considered, i.e

X̂ = {Xl : nl = min
i
(ni)}, (2)

and Xs is selected randomly from this subset. The rationale

behind is that those samples should be selected that have not

been considered (often) before, thus exploring the data set.

Then, a class annotation ωs for Xs is requested from the

annotator, which can also be a rejection label. This manual

assignment is trusted, hence Xs is removed from X and

appended to T , with ys = ωs. Note that, in “real” active

learning, the sample selection would be based on the current

state of some classifier. In omitting this, we are able to start

with a completely unlabeled data set and avoid frequent re-

training with potentially unreliable ground truth.

Afterwards, r retrieval tasks are carried out on the remain-

ing set X\Xs using the r different feature representations

xsj as queries. This results in r retrieval lists Lj , ranked

according to some distance d(xij ,xsj), and thresholded with

a common threshold κd on the distances. In the following,

the cosine distance is used for d(...). Assume that a sample

Xp is present in Nr of the r thresholded lists. Then, the

confidence γps of Xp belonging to the query class ωs is

given by γps = Nr

r
. If γps is 1, i.e. if Xp appears in all

thresholded lists, then Xp is assigned the label ωs, removed

from the sample pool X and appended to the pool of trusted

samples T , i.e: X = X\Xp, yp = ωs, T = T ∪ {Xp, yp}.
Otherwise, ωs is appended to up, γps is appended to vp,

and np is incremented, i.e: up = up ∪ ωs, vp = vp ∪ γps,

np = np+1. The sample remains in the pool X in this case,

and may be considered again in further iterations. Samples

with d(...) > κd in all retrieval lists remain unchanged.

This interactive procedure is repeated until a termination

criterion is met. In practice, we simply abort after a fixed

number Im of manual operations. Each remaining sample

Xi ∈ X : ni > 0 now has a list ui = {uit, t = 1...ni}
of assigned labels with associated confidences vi = {vit}.
Furthermore, the initially unknown set of available classes

Ω = {ωk, k = 1...c} has evolved based on the manual

annotations provided in the process. For each Xi, the

accumulated class confidences

σi(ωk) =
∑

t

∑

k

vitδ(uit − ωk) (3)

are calculated and then normalized to [0, 1] by dividing by

the maximum possible accumulated confidence:

σ̃i(ωk) =
r

(r − 1) · ni

· σi(ωk). (4)

Finally, the final class label yi of Xi is determined as the

one having the maximum accumulated confidence:

yi = argmax
k

(σ̃i(ωk)). (5)

If the associated maximum confidence σ̃i(yi) is above a

threshold κv , the sample is added to T . Otherwise, the

sample is rejected because the assigned label would be too

unreliable. The classifier is then trained on the retained set

of trusted samples T .

Compared to CBA presented in the previous section, the

above procedure offers several advantages. No prior knowl-

edge or assumption about the number of classes is required

because they will evolve implicitly based on the labels

assigned by the annotator. Also, it is possible to manually

reject ”bad” samples, and the required manual effort does not

depend on the number of different representations r since

they are evaluated simultaneously. On the other hand, the

impact of errors in the manual annotation can be expected

to be higher. Additionally, values for the parameters κd, κv

and Im have to be selected heuristically. Suitable values will

be determined experimentally in section IV-D.

IV. EXPERIMENTS

In order to assess the performance of the proposed

methods, we first derive suitable parameters on the MNIST

handwritten digit datset [15], using the original division
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of samples in training (60, 000) and test set (10, 000).

Afterwards, a realistic transductive recognition experiment

is conducted on a set of historical documents.

A. Data description and experimental setup

Our data set consists of historical official weather reports,

kindly provided by the German Weather Service (”Deutscher

Wetterdienst”, DWD). Detailed characteristics of the data are

given in [16]. For the experiments reported here, a set of 106
document images was provided, scanned at approximately

200 dpi. The entire collection comprises several 10, 000
pages, but only a small subset is currently available in

digitized form.

In total, the data contains 13,331 samples (5,140 char-

acters, 8,191 digits) in 17 classes (digits 0–8, characters

N, S, W, O, E, T, I, L). Ground truth labels are available

for all samples. The data set is highly unbalanced, and

several classes occur very rarely. Since the documents are

tabular and each table field should exclusively contain either

characters or digits, we assume that knowledge about the

type of each sample is known from a document template

(cf. [16]). This information will be used in the retrieval

and classification to limit the set of candidates. Documents

are subdivided in a 3-fold cross-validation setup, where, in

each validation set, approximately 2/3 of the documents

constitute the training set and the remaining the test set,

respectively. Thus, training and test set are disjunct, but

overall, all documents are considered once for testing.

B. Features

The proposed labeling methods rely on a multiview ap-

proach using different feature representations. In principle,

the methodology is independent of the types of features

used. Obviously, the better the discriminative power of the

features, the better the results will be. Especially for the

retrieval-based approach, compact features are desirable in

order to keep the process efficient and avoid latencies in the

interactive loop.

In the following, we focus on a set of features that yielded

good performance in our previous work. Specifically, we

consider the raw image of a character (RAW), normalized

to size 28× 28 pixels, its PCA representation using the first

80 PC [16], and higher-level structural features based on

contour chain codes (CC), skeletons (SKEL) and character

reservoirs (RES) [17]. The latter were modified by consid-

ering 5 types of reservoirs (top, bottom, left, right, loop)

and using just a soft assignment of the positions of their

gravity centers to image cells. All features are calculated

in a 4 × 4 regular grid on the normalized character image.

Feature dimensionalities range from 36 (SKEL) to 80 (PCA).

C. Parametrization of CBA

Even though using all features might provide a better

discrimination for the different clusters, selection of a subset
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Figure 2. Sample recall R, label precision P and F3 of RBA for different
values of κd, κv using best feature set (CC, PCA, RES). Values are color-
coded from 0 (black) to 100% (white).

is advisable for efficiency reasons. In order to select the

best setup in terms of combinations of feature and clustering

method, an exhaustive search was performed. All different

features extracted from the MNIST training material were

clustered using k-means, SOM (Self Organizing Map) and

GNG (Growing Neural Gas) [18]. The cluster centers were

then manually annotated by an expert.

As quality criteria, the sample recall R (percentage of

retained trusted samples after voting) and label precision P
(percentage of correctly labeled retained samples) obtained

on MNIST were used. Ranking the different combinations,

the best setup was: RAW/GNG, CC/GNG, and CC/k-means.

In general, GNG and k-means outperform SOM clustering.

With this setup and 54 cluster centers [13] for each combi-

nation, unanimity vote occured in R = 76.15% of the cases

with a precision P = 96.10%. Thus, 45,690 annotations

were inferred using only 162 manual labeling operations,

corresponding to a relative manual effort of 0.35%. Com-

pared to [13], the sample recall increased substantially (ap-

prox. 21%) while the same labeling accuracy was obtained.

This shows the benefit of incorporating not only different

feature representations, but also different clustering methods

resulting in a better diversification of the data views.

D. Parametrization of RBA

In order to find suitable values for the parameters κd

and κv , a number of experiments was conducted on the

MNIST data set, performing Im = 500 labeling operations

and averaging over 10 runs with identical parametrization

in order to smooth the effects of the random selection. The

manual labeling was simulated by assigning the respective

ground truth label to the query example, i.e. error-free

annotation is assumed. The goal is to find a range of

parameters offering a good balance between sample recall

and label precision. Numerous combinations of the different

features were investigated, excluding RAW for efficiency

reasons. Due to space restrictions, we will not provide details

on all experiments, but just report results for the best feature

combination (CC + PCA + RES, i.e. r = 3).

As can be seen in Fig. 2, the labeling precision is generally

high, except for small values of κv . It also degrades for

small values of κd, because then only few samples will

be considered in each retrieval run, and the small overall
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number of votes leads to an unreliable majority decision.

In terms of sample recall, the method is more restrictive

than CBA retaining large fractions of the data only for small

values of κv . While CBA enforces exactly the same number

of votes for all samples it varies in RBA. Consequently,

samples at the boundary of class distributions may get very

few or inconsistent votes and thus are rejected. This could

possibly be improved by incorporating a more sophisticated

sample selection method in the interactive annotation loop

(instead of simple random selection), but investigation of

this issue is left for future work.

In order to determine a suitable parametrization, we calcu-

late the F3 score F3 = 10RP

9R+P
, reflecting the assumption that

it is more desirable to have correctly labeled samples than

retaining large portions of the original data. The maximum

score was F3 = 91.54% (R = 82.72%, P = 92.63%) for

parameter values κd = 0.25, κv = 0.20. However, from

Fig. 2, it becomes obvious that the quality in terms of

F3 is comparable for a range of parameter values around

this optimum, meaning that the method is not too sensitive

against the concrete choice of values. In the following, again

favoring high precision, we will use more restrictive param-

eter values of κd = 0.2, κv = 0.30, yielding P = 97.15%,

R = 59.02%, F3 = 91.26% for the above experiment.

E. Recognition experiments

The setups derived above are evaluated in a transductive

classification experiment on the MNIST and DWD data,

demonstrating that the methods perform reliably on different

datasets and that tuning the parameters to specific data –

which is not possible in real applications – is not necessary.

We perform a realistic experiment, where the training sets

are first labeled by an expert annotator using the proposed

methods. Then, the classifiers are trained on the resulting

sets of trusted samples, and evaluated on the disjunct test

sets. For comparison, we also present results of oracle

experiments, using all ground truth labels for training. These

constitute an upper limit of the achievable performance.

In order to make the results comparable, an identical

number of manual annotations (162) is used for both CBA

and RBA. Statistics on MNIST for CBA using this setting

were given in Sec. IV-C. For RBA, a recall of R = 57.91%

and precision of P = 90.02% were obtained.

For the 3-fold cross-validation on the DWD data, also

162 labeling operations were performed for each validation

set. With CBA, on average R = 92.00% of the training

material was retained, yielding an average label precision of

P = 92.18%. With RBA, R = 87.74% of samples were

retained with P = 95.64%.

As discussed in [16], a drawback of CBA is that it tends

to discard rare classes in the case of highly unbalanced

data, since they do not form individual clusters and are

eliminated by the unanimity voting. While this did not occur

for the balanced MNIST set, only 14 out of 17 classes were

Figure 3. Labeling quality and classifier performance vs. number of manual
annotations for RBA (MNIST, SVM classifier, κd = 0.2, κv = 0.30).

recovered on average on the DWD data. With RBA, all 17
classes were retained. This shows a major advantage of the

RBA approach: Because of the steered sample selection,

under-represented classes are less likely to be discarded.

For recognition, a linear SVM classifier in a 1-vs-1

multiclass setup is used. The resulting character recognition

rates are given in Table I. Applying the proposed labeling

schemes to the MNIST data results in a substantial loss in

recognition performance. The reason is that both methods

rely on discovering clusters of similar samples, i.e. from the

same writer or written in the same style. Since the MNIST

data is very diverse and contains hundreds of writers, this

assumption is violated, resulting in a loss of accuracy. RBA

performs worse than CBA because propagating the labels

based on the retrieval lists proceeds considerably slower

than labeling the large portions of data contained within a

cluster. As shown in Fig. 3, the performance of RBA keeps

increasing until approximately 400–500 manual annotations

were performed (still a relative effort of less than 1%).

The saturated recognition score is comparable to CBA.

annotation with a more achievable performance,

However, for the DWD data, which is much more ho-

mogeneous in terms of writing style, the results obtained

with both CBA and RBA are close to the reference oracle

experiment. This clearly shows the potential of both meth-

ods, provided that large portions of the data show similar

characteristics. Only very little manual effort was required

(performing the 162 labeling operations was a matter of a

few minutes in both cases) to obtain competitive recognition

rates, making the proposed methods especially promising for

large single-writer collections.

V. CONCLUSION

Two semi-supervised methods for annotating data with

minimum human effort were proposed. Both build on ideas

from multiview learning in order to propagate labels to

unknown data reliably incorporating a voting procedure over

different feature representations. It was demonstrated that
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Table I
OVERVIEW OF RECOGNITION RESULTS (IN %) AND CONFIDENCE INTERVALS FOR CONFIDENCE LEVEL 0.95.

Data Anno. method #Anno RAW PCA CC SKEL RES

Ground truth 60, 000 92.15±0.54 92.60±0.53 95.30±0.43 85.69±0.70 82.32±0.76
MNIST CBA 162 88.13±0.65 88.64±0.64 91.28±0.57 83.83±0.73 81.58±0.77

RBA 162 84.97±0.71 86.76±0.68 89.50±0.62 81.91±0.77 78.36±0.82

Ground truth 8,887 91.59±0.48 93.74±0.42 95.54±0.36 92.21±0.47 88.31±0.56
DWD CBA 162 90.26±0.52 92.05±0.47 93.76±0.42 91.07±0.50 87.43±0.57

RBA 162 87.56±0.57 91.98±0.47 94.64±0.40 90.73±0.50 86.57±0.59

thousands of training labels can be inferred from very few

manual annotations with high accuracy, therefore facilitating

the annotation of large data sets within minutes. Using these

labels a recognizer was trained that achieved good perfor-

mance in a handwritten character recognition experiment

on two different databases. Since both approaches rely on

finding large clusters of similar data samples they are es-

pecially promising for collections containing large portions

of data from the same or just a few different writer(s). In

this case, the recognition performance achieved is close to

the reference oracle experiment. Thus, the proposed methods

can facilitate the efficient training of statistical recognizers

specialized on specific document collections by massively

reducing the prohibitive manual burden and associated cost

that would normally be required.
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[4] M. Wüthrich, M. Liwicki, A. Fischer, E. Indermühle,
H. Bunke, G. Viehhauser, and M. Stolz, “Language model
integration for the recognition of handwritten medieval doc-
uments,” in Proc. Int. Conf. on Document Analysis and
Recognition, 2009.

[5] T. M. Rath and R. Manmatha, “Word spotting for historical
documents,” Int. Journal on Document Analysis and Recog-
nition, vol. 9, no. 2, pp. 139–152, 2007.
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