
Script Independent Word Spotting in Offline Handwritten Documents Based

on Hidden Markov Models

Safwan Wshah, Gaurav Kumar and Venu Govindaraju

Department of Computer Science and Engineering

University at Buffalo

srwshah, gauravku, govind@buffalo.edu

Abstract

Keyword spotting aims to retrieve all instances of a

given keyword from a document in any language. In this

paper, we propose a novel script independent line based

word spotting framework for offline handwritten docu-

ments based on Hidden Markov Models. The method-

ology simulates the keywords in model space as a se-

quence of character models and uses the filler models

for better representation of background or non-keyword

text. We propose a two stage spotting framework where

the candidate keywords are further pruned using the

character based background and lexicon based back-

ground model. The system deals with large vocabulary

without the need for word or character segmentation.

The system has been evaluated on many public dataset

from several languages such as IAM for English, AMA

for Arabic and LAW for Devanagari. The system out-

performs the modern line based approach on the En-

glish, Arabic and Devanagari Datasets.

1. Introduction

Despite the great progress made in handwriting

recognition systems during the last decade, it still re-

mains a challenging problem due to different writing

styles and large vocabulary[2][11]. As a result, several

word spotting techniques have been proposed instead of

complete recognition systems to retrieve keywords from

document images. The optimum trend in word spotting

systems is to propose methods that show high accuracy,

high speed and work on any language with minimum

prepossessing steps such as preparing the query format

or word segmentation. We categorize the word spotting

approaches into three main categories: template based,

word based and line based. In the template based ap-

proach, input image is matched to a set of template key-

word images and the outputs are the images most sim-

ilar to the query image. The image is represented as

a sequence of features and usually compared with dy-

namic time warping (DTW) technique [9][13][16]. The

main advantage of this approach is that there is mini-

mum learning involved. However, we need at least one

keyword sample in the training dataset. Moreover, the

text line images have to be segmented into words and

there are limitations of dealing with wide variety of un-

known writers [6].

In word based spotting such as [14] and [15], the

HMM model for each keyword is trained separately.

The score of each HMM is normalized with respect to

the score of the same topology HMM trained for all

non-keywords. This approach relies heavily on per-

fect word segmentation and requires several samples for

each keyword in the training set.

In the line based approach, the word or character seg-

mentation step is done during the spotting process. In

[4] and [5], character HMMs are trained from manu-

ally segmented templates assuming small variation in

data. In [6], a line level approach is presented us-

ing HMM character models under the assumption that

no more than one keyword can be spotted in a given

line. Their approach outperformed the template based

methods for single writer with few training samples

and multi-writers with many training samples. A ma-

jor drawback in their approach is the dependency on the

white space to separate keywords from rest of the text.

This not only has a large influence on the spotting re-

sults but also prevents the system from being scalable

over other languages such as Arabic in which the space

could be within or between the words revealing little

information about the word boundaries [4]. Besides,

the lexicon free approach to model the non-keyword

has large negative effect on their system performance

as well. For more details about their algorithm refer to

[6].

There has not been much research focused on multi-

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.264

14

lingual word spotting systems. Srihari [16] and Bhard-

waj [3] proposed work based on template matching for

Arabic, English, and Hindi using GSC, and moment

features. These approaches suffer from the same lim-

itations of template based approaches.

In this paper we propose a novel methodology for

word spotting in offline handwritten documents based

on Hidden Markov Models (HMM). We learn HMMs

of trained characters and combine them to simulate

any keyword, even those unseen in the training cor-

pus. We use filler models for better representation of

non-keyword image regions avoiding the limitations of

line-based keyword spotting technique, which largely

relies on lexicon free score normalization and white

space separation. Our system is capable of dealing with

large vocabulary without the need for word or character

segmentation and scalable over many languages such

as English, Arabic and Devanagari. The main char-

acteristic of the proposed approach is utilizing script-

independent methods for feature extraction, training

and recognition. The system has been evaluated on pub-

lic datasets of different languages such as IAM [10] for

English, AMA [1] for Arabic and LAW [7] for Devana-

gari or Indian languages. The system outperforms the

modern line based approach presented in [6] for all the

languages as shown in the experimental results.

2. Preprocessing and Feature Extraction

We assume that the document lines have been seg-

mented and the image height resized to a fixed value

maintaining the aspect ratio.The input line image is

cleaned, deskewed and slant corrected. For each doc-

ument line, features are computed from a sequence of

overlapped windows, also called a frame, and gradi-

ent and intensity features are extracted for each frame.

The selected frame width is 20 pixels with frame over-

lap of 85%. Each frame is divided into two vertical

cells known as bins. The division is based on center

of mass of its black pixels. For each bin, the gradi-

ent features are calculated from a normalized histogram

of 8-directions. The intensity features were extracted

by dividing each bin into four equal horizontal strips

and count of black to white pixels was normalized for

each strip. As a result, 24 features are extracted for each

frame as shown in figure 1.

3. Character Models

Feature extraction procedure converts the text line

into a set of features F as shown in figure 1. Given

an Observation vector O, the i-th observation value Oi

Figure 1: Feature Extraction

corresponds to the ith dimension in the feature vector

fi. For each character, a 14-state linear topology HMM

is learnt. For each state Si, the observation probabil-

ity distribution is modeled by a continuous probabil-

ity density function of Gaussian mixture. Each line is

constructed from words that are formed by concatenat-

ing the corresponding character HMM models which

we refer as recognition network. The recognizer finds

the highest probability path through the network using

Viterbi algorithm [12].

4. Proposed Model

We propose a novel script independent line based

spotting framework. Given a line image, the goal is

to locate and recognize one or more occurences of a

keyword. The algorithm starts by detecting the can-

didate keywords using a recognizer that searches for

the keywords in a line. Keyword models consist of

all keywords built by concatenating their HMM char-

acter models. The HMM based recognizer uses the

Viterbi beam search decoder [12] to parse the entire line

finding the maximum probability path between the key-

words and filler models as shown in figure 2. Each key-

word candidate is processed by extracting it from the

line using the start and end position. Then the score of

each candidate keyword is normalized with respect to

the score of word background models. Our approach

utilises both the filler and background models. The dis-

tinction between the models is explained below.

4.1. Filler Models

Filler models are used to model the non-keywords

without explicitly defining them. They allow separation

of keyword text from non-keyword background. While

the proper modeling of non-keywords reduces the rate

of false positives, the proper modeling of the keywords

increases the true positive rate. We investigate several

filler models such as sub-words including characters or

sequence of characters. Table 1 contains the summary

of filler models that we propose and evaluate, including

15

Table 1: Filler models

Model Description

Characters Group of character models used as fillers.

Bigram context dependent Character models All bigram context dependent character not found in the keyword

list used as filler models.

Bigram context independent sub-words All bigram characters sequence not found in the keyword

list is modeled used as filler models.

Trigram context dependent Character models All Trigram context dependent character not found in the keyword

list used as filler models.

Trigram context independent sub-words All Trigram characters sequence not found in the keyword

list is modeled used as filler models.

characters, bigram-subwords or trigram-subwords. All

these models are compared based on the accuracy, com-

putation complexity and simplicity of the implementa-

tion.

In case of context-dependent bigram and trigram

models, all character models are trained based on their

position in the context. All context-dependent charac-

ters not appearing in keyword models are used as fillers.

This technique requires an exceptionally large training

data for the purpose of training a large number of con-

text dependent character models. In the case of context

independent filler model all the non-keyword character

sequences not appearing in the keywords are used as

filler models. Since the number of non-keywords se-

quences is huge, it adds more complexity to the system.

Character filler models (CFM) can significantly re-

duce the computational complexity making it more at-

tractive for real applications due to fewer models and

high efficiency. Each CFM is an HMM model that has

exactly same implementation of the character models

but trained on different classes.It is expected that the

number of CFMs will affect the performance, and thus

different numbers of CFMs are evaluated for each lan-

guage. The clustering of these CFMs is implemented as

described in algorithm 1. The candidate keywords from

the filler models are pruned using the word background

models to efficiently reduce the false positive rate.

4.2. Background Model

Score normalization is an effective method to en-

hance accuracy. It is applied as a rejection strategy

to decrease the false positive rate [14]. In this paper

we present two novel methods for score normalization.

The first method is based on score normalization be-

tween the keyword candidate and non-keywords scores

as shown in figure 3. We refer to it as Lexicon Based

Background Model. The other method is based on the

character filler models as shown in figure 4 referred as

Character Based Background Model.

Algorithm 1

INPUT :HMM characters models, testing data, num-

ber of the required filler models.

OUTPUT: Character filler models.

Initialization: INPUT ← HMM character models.

OUTPUT← ”

Step 1:

for all character model in INPUT do

for other character models in INPUT do

Merge the characters pair models.

PAIRS[Accuracy, characters pair]← Evaluate

the testing set accuracy after merging.

end for

MaxPair← Pick maximum accuracy from PAIRS.

Merge the corresponding pair (MaxPair)and store

it in OUTPUT array.

Delete pair from INPUT.

end for

Step 2:

Label the testing data according to the new models.

Step 3:

if OUTPUT size == Number of filler models then

end

else

INPUT← OUTPUT, OUTPUT← ”, go to step 1.

end if

16

Figure 2: Main Model, (a) keywords and filler models,

(b) score normalization using background models.

Figure 3: Lexicon based word background model

Lexicon Based Background Model: In this tech-

nique, Background model is represented by all or a sub-

set of non-keywords.A reduced lexicon is used to over-

come the high computational complexity which results

from using all non-keywords. The candidate keyword

recognized in filler models stage is either correct or

similar to the keyword due to the fact that filler mod-

els represent the non-keywords regions. The reduction

in size of the Background model is implemented based

on the Levenshtein distance between all non-keywords

and the candidate keyword text. The non-keyword is

added to the reduced lexicon if its edit distance is less

than a certain threshold. Reduced lexicon can be com-

Figure 4: Word Background Model using Character

Filler Models.

puted once for each keyword without adding more com-

putation cost to the system. In general, for lexicon

based background models the likelihood ratio, R be-

tween keyword candidate score (Sscore) and the WBM

scores (SLexicon score) is given by:

R =
Sscore

SLexicon score

(1)

If R is larger than 1, this means the candidate is most

likely a keyword. The likelihood ratio R is normalized

by the width of the keyword width. Positive match is

considered if the normalized likelihood score is greater

than a certain threshold T.

R

W
> T (2)

Character Based Background Model: The second

background model is based on the character filler mod-

els as shown in figure 4. The candidate keyword is

evaluated over the background models as the best path

between keyword candidate characters and their corre-

sponding character filler models. Thus, obtaining the

separation amount between the keyword and the back-

ground. The complexity of this technique is very low

compared to the lexicon free and reduced lexicon tech-

niques. The normalized likelihood score is the ratio, R

between keyword candidate score (Sscore) and the sum

of background character scores (Sbkscore):

R =
Sscore∑

i
Sbkscore(i)

(3)

If R is closer to 1, it is most likely to be a keyword.

The likelihood ratio R is normalized with the width of

the keyword (W) and a Positive match is considered if

the normalized likelihood score is within certain thresh-

olds.

T1 >
R

W
> T2 (4)

17

5. Experimental Results

Three public dataset are used for the experimental

evaluation: the public IAM dataset [10] for English,

the public AMA [1] dataset for Arabic, and LAW [7]

dataset for Devanagari.

IAM English dataset: A Modern English handwrit-

ten dataset consists of 1539 pages text from the Lancas-

terOslo/Bergen corpus [8]. The dataset has been writ-

ten by 657 writers. 3200 lines are used for training and

1000 line for testing. For more details about this dataset

refer to[10].

AMA Arabic dataset: A Modern Arabic handwritten

dataset of 200 unique documents consisting of 5000

documents transcribed by 25 writers using various writ-

ing utensils. 4200 lines are used for training and 1000

lines for testing. For more details about this dataset re-

fer to [1].

LAW Devanagari dataset: The Devanagari lines are

semi automatic and are formed by randomly concate-

nating up to 5 words from a dataset containing 26,720

handwritten words written in Hindi and Marathi lan-

guages (Devanagari script) separated by a random space

size. We use 2000 lines for training and 1000 lines for

testing. For more details about this dataset refer to [7].

The results are measured using precision, recall and

mean average precision (MAP). Recall = TP

(TP+FN) and

Precision = TP

(TP+FP) , where TP: True positive, FN:

False negative and FP: False positive. Mean Average

Precision (MAP) is given by the area under curve of re-

call vs precision graph. To evaluate the filler types, an

experiment for each type is implemented. All the non-

keywords are used to represent the background models

to study the effect of the filler types only. IAM dataset

is used with three different numbers of keywords, 30,

100 and 500 respectively. The keywords are randomly

selected with 20% not present in the testing set. Fig-

ure 5 shows that character filler models outperform all

other filler types, making it the most attractive model

due to its excellent performance and low complexity.

The number of best character filler models found for

English, Arabic and Devanagari are 4, 11 and 7 re-

spectively. The main reason for using the lexicon re-

duction method is to reduce the computational com-

plexity without affecting the performance. The reduc-

tion based on Levenshtein distance shows an effective

method of large lexicon reduction with slight affect on

the systems performance due to the similarity between

the detected candidate and the keyword text. As a re-

sult, a huge reduction in the computational complexity

is achieved. Figure 6 shows the performance of differ-

ent background models including background character

based method and lexicon based method with different

Figure 5: Filler types performance

Figure 6: Background models performance

reduction ratios.

We compare the proposed system with similar line

based approach proposed by Fischer[6]. We imple-

mented their algorithm using the same HMM models

topology. We used same features and data as used

in our system for comparison.Thus both systems were

compared in exactly same environment. Our proposed

method outperforms their method on different size of

keyword list as shown in figure 7.Fischer’s algorithm

[6] can detect up to one keyword per line. The best re-

sults for their algorithm can be obtained when each line

contains only one keyword. There are many false posi-

tives detected in the lines that do not contain keywords

due to the high error rate of the lexicon free technique.

In addition their dependency on the white space model

affect the performance to a high degree particularly for

Arabic in which the space could be within or between

the words revealing little information about the word

boundaries as shown in figure 7.Proposed word spot-

ting system is able to retrieve any number of keywords

and of any size.

Figure 7 shows the proposed system evaluation on

other languages such as Arabic and Devanagari. The

same feature extraction, character filler models and

background models are used. We used 150 keywords

for Arabic and English, and 30 keywords for Devana-

gari. Character filler models and 90% reduced lexicon

background models are used. For each language the re-

18

Figure 7: Comparison with the previous methods per-

formance

Figure 8: Performance on English, Arabic and Devana-

gari compared with line based approach.

sults are compared to the method presented in [6] show-

ing our proposed system had better results over all the

languages.

6. Conclusion

In this paper we proposed a learning based script

independent word spotting system effectively capable

of dealing with large vocabularies without the need for

word or character segmentation. The high performance

and low complexity of the character filler models make

them attractable for real systems. Lexicon reduction us-

ing Levenshtein distance allows a high degree of lexi-

con reduction thus reducing the complexity which re-

sults from large lexicon size without affecting the per-

formance. The proposed system has been evaluated on

several languages including English, Arabic and De-

vanagari. The system shows high performance com-

pared to the previous line based algorithms. In future

work, the algorithm will be extended to work on multi-

lingual documents and investigate the possibility of us-

ing language models to enhance the performance.

References

[1] Applied media analysis, arabic-handwritten-1.0. 2007.

[2] Alessandro and Vinciarelli. A survey on off-line cursive

word recognition. Pattern Recognition, 35(7):1433 –

1446, 2002.
[3] A. Bhardwaj, D. Jose, and V. Govindaraju. Script inde-

pendent word spotting in multilingual documents. 2nd

Intl Workshop on Cross Lingual Information Access,

pages 48–54, 2008.
[4] J. Chan, C. Ziftci, and D. Forsyth. Searching off-

line arabic documents. In Proceedings of the 2006

IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition - Volume 2, CVPR ’06,

pages 1455–1462, Washington, DC, USA, 2006. IEEE

Computer Society.
[5] J. Edwards, Y. W. Teh, D. Forsyth, R. Bock, and

M. Maire. Making Latin manuscripts searchable using

gHMMs. NIPS, 2004.
[6] A. Fischer, A. Keller, V. Frinken, and H. Bunke.

Lexicon-free handwritten word spotting using charac-

ter hmms. Pattern Recogn. Lett., 33(7):934–942, May

2012.
[7] R. Jayadevan, S. R. Kolhe, P. M. Patil, and U. Pal.

Database development and recognition of handwritten

devanagari legal amount words. Document Analysis and

Recognition, International Conference on, 0:304–308,

2011.
[8] L.-G. G. H. Johansson, S. Manual of Information to Ac-

company the LancasterOslo/Bergen Corpus of British

English, for Use with Digital.
[9] R. Manmatha, C. Han, and E. Riseman. Word spot-

ting: a new approach to indexing handwriting. In Com-

puter Vision and Pattern Recognition, 1996. Proceed-

ings CVPR ’96, 1996 IEEE Computer Society Confer-

ence on, pages 631 –637, jun 1996.
[10] U.-V. Marti and H. Bunke. The iam-database: an en-

glish sentence database for offline handwriting recogni-

tion. International Journal on Document Analysis and

Recognition, 5:39–46, 2002. 10.1007/s100320200071.
[11] R. Plamondon and S. N. Srihari. On-line and off-

line handwriting recognition: A comprehensive survey.

IEEE Trans. Pattern Anal. Mach. Intell., 22(1):63–84,

Jan. 2000.
[12] L. R. Rabiner. A tutorial on hidden markov models and

selected applications in speech recognition. In Proceed-

ings of the IEEE, pages 257–286, 1989.
[13] T. M. Rath and R. Manmatha. Word spotting for his-

torical documents. INTERNATIONAL JOURNAL ON

DOCUMENT ANALYSIS AND RECOGNITION, pages

139–152, 2007.
[14] J. A. Rodrguez-Serrano and F. Perronnin. Handwrit-

ten word-spotting using hidden markov models and uni-

versal vocabularies. Pattern Recognition, 42(9):2106 –

2116, 2009.
[15] R. Saabni and J. El-Sana. Keyword searching for arabic

handwritten documents. 11th International Conference

on Frontiers in Handwriting recognition (ICFHR2008),

pages 716–722, 2008.
[16] S. N. Srihari, H. Srinivasan, C. Huang, and S. Shetty.

Spotting words in latin, devanagari and arabic scripts.

Artificial Intelligence, page 2006.

19

