
Separability versus Prototypicality in Handwritten Word Retrieval

Jean-Paul van Oosten and Lambert Schomaker
Dept. of Artificial Intelligence, University of Groningen, The Netherlands

{J.P.van.Oosten,L.Schomaker}@ai.rug.nl

Abstract

User appreciation of a word-image retrieval system is
based on the quality of a hit list for a query. Using sup-
port vector machines for ranking in large scale, hand-
written document collections, we observed that many
hit lists suffered from bad instances in the top ranks.
An analysis of this problem revealed that two functions
needed to be optimised concerning both separability
and prototypicality. By ranking images in two stages,
the number of distracting images is reduced, making
the method very convenient for massive scale, continu-
ously trainable retrieval engines. Instead of cumbersome
SVM training, we present a nearest-centroid method and
show that precision improvements of up to 35 percentage
points can be achieved, yielding up to 100% precision in
data sets with a large amount of instances, while main-
taining high recall performances.

1. Introduction

In handwriting recognition, classification is often per-
formed using statistical methods (see for example the
overview in [4]). The class indexed i with the highest
posterior probability given the sample to be classified is
chosen as the result of the classifier:

irecog = argmax
i

P (Ci|X) where i ∈ {1, Nc} (1)

However, when the goal is word search, rather than
automatic text transcription, the user is more interested
in retrieval of word instances. Instead of a single clas-
sification, the result is a sorted hit list H . Each instance
indexed j is ranked with respect to the prototype or class-
model corresponding to the search term:

H = sort
j

(P (Xj |C)) where j ∈ {1, Nx} (2)

Retrieval is usually performed on a large collection of
instances and only the top of the sorted list, representing
the best ranking instances, is considered as interesting.
Under such a condition, a large number of classes and
a massive data collection can pose a problem, since for
each query there is a large number of distractors, i.e.,
concerning instances from all classes, other than the tar-
get class.

Figure 1. First 25 instances in a hit list of the word
‘Zwolle’. Original test set performance: Accuracy:
99.2%, precision: 97.6% and recall: 97.6%. In a
realistic test condition with 12k distractors, actual
precision is as low as 2.8%.

This becomes apparent in retrieval engines for hand-
written words in historical collections [15]. In the Monk
system, twenty books of ≈1000 pages each contain mil-
lions of word zones or word candidates, and the lexicon
is in the order of tens of thousand word class models.
From the tradition of handwriting-recognition research,
it seems reasonable to start with the classification prob-
lem (Eq. 1), using good shape features and a powerful
classifier, such as, e.g., hidden-Markov models [9, 1] or
the support-vector machine [17, 3]. For a word-mining
task, such a classifier may be trained to discriminate a
particular word class, and a ranked word list may be con-
structed, e.g., using the signed SVM discriminant value
dSVM for sorting. The basic assumption then is, that
the distance from the margin, i.e., from the instances in
the distractor classes, will be a good criterion for con-
structing a ranked hit list for a target class. However,
upon applying this approach, we observed an interesting
phenomenon in the resulting hit lists. As an example,
Figure 1 shows the top-25 instances in a hit list for the
word ‘Zwolle’. The performance for the word classi-
fier on the entire training set was 100% accuracy, with
a 97% accuracy on an independent test set (k = 7 folds,
σ = ±1%). Following regular testing procedures for
SVMs, the training and the test sets were of similar size,
each containing a quarter of positive examples (typically
50) and three quarters of negative or distractor exam-
ples. However, the resulting hit list contains a number
of counter-intuitive samples (e.g., speckle images) in the
early ranks, followed by a strand of correct classifica-

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.269

8

Table 1. Counter-intuitive, low precision results for good classifiers
Accuracy Recall Precision

Set Nexamples Mean σ Mean σ Mean σ

Test 120+ 0.98 0.02 0.97 0.05 0.96 0.07
60-120 0.97 0.03 0.95 0.10 0.91 0.13
35-60 0.97 0.04 0.93 0.15 0.85 0.19

7-35 0.96 0.04 0.68 0.42 0.57 0.40
+12K Distractors 120+ 0.99 0.01 0.97 0.05 0.26 0.26

60-120 0.98 0.02 0.95 0.10 0.06 0.12
35-60 0.97 0.02 0.93 0.15 0.03 0.06

7-35 0.97 0.04 0.68 0.42 0.01 0.05

tions which is followed by a transitional stage of occa-
sional errors.

The impression that there exists a problem is con-
firmed by a larger-scale analysis of the results (Table 1),
also using a realistic large set containing ≈ 12×103 dis-
tracting word instances. From the results it can be seen
that although the results for recall and accuracy on the
realistic data set confirm the hopeful expectancies which
were raised by the regular training and test sets, the pre-
cision of the output drops abysmally, to about 1% in the
worst cases, notably the classes with a limited number of
training examples (Table 1, lower right), when the num-
ber of distractors is large and realistic.

It is clear that something is needed to improve on
the performance. User appreciation of hit lists is of
paramount importance in live and continuously trainable
systems that rely on user annotation over the internet,
such as Monk[15, 16]. Upon giving the first handful of
(bootstrap) examples, a usable machine-learning system
should be able to produce an acceptable ranking such that
newly found instances of the same class can be easily la-
belled. The above, concrete observation thus gives rise
to a more fundamental question: How is it possible that
accuracy is not a good predictor of precision in a retrieval
context?

In this study, we will 1) analyse the reason for un-
expected, low precision in presumably well-performing
classifiers; 2) explore a number of methods to counteract
the precision drop and 3) present a convenient approach
using nearest-centroid matching, with results in a similar
ballpark as the abovementioned SVM approach, at the
same time however, avoiding expensive training on the
tens of thousands of word classes.

2. Separability versus Prototypicality

The SVM is a discriminative classifier, optimised for
classification (Eq. 1). The class of an unknown sample
X (Figure 2) is decided by determining on which side of
the decision boundary β the sample falls. For retrieval
purposes, it appears reasonable to use the distance to the
boundary, d(X, β), as a ranking measure: the farther the
instance is located from the boundary, the more certain
an SVM classifier is of the classification.

Unfortunately, this gives unexpected results, such as
shown in Figure 1 for the query word ‘Zwolle’. Instances
that are ranked at the top (“@speckles”) appear to be
counter intuitive to a human user. It seems that there are

�

�

��

�������

���������	

��

�����������	

�������

����������

Figure 2. Separability vs. Prototypicality: For an un-
known instance X , a large distance from a margin
β does not imply a short distance from the proto-
type λA

two problems: 1) the distance to the boundary is not an
intuitive measure, and 2) a fairly large number of dis-
tractors causes noise in a hit list, and consequently, a
lower precision. The implication is that enlarging the
dataset increases the probability that incorrect instances
occur even before the first correct hit. This has a large
impact on the user appreciation and is hard to explain.
More informally: Many hits do not appear similar to
the expected, canonical prototype for the query. In or-
der to give a plausible explanation of this phenomenon,
we present a schematic, two-dimensional overview. The
position of an instance X in Figure 2 has a large dis-
tance d(X,β) from the boundary β (which is desirable).
However, the instance X is not very prototypical, being
located far from the known instances of the target class
A. In other words, the distance of the instance X to the
prototype, or centroid of class A, d(X,λA), is large.

The support-vector machine training mechanism has
an emphasis on separability: the ability to categorise and
separate class instances from non-class instances. This
ability is usually achieved by evaluating the computed
signed distance of an unknown sample to the decision
boundary d(X, β) which indicates on which side the in-
stance X falls. However, by focusing on separation, an

9

important aspect of pattern recognition is neglected: The
phenomenon of prototypicality which concerns the simi-
larity of an instance to the canonical class prototype, for
instance, measured as the distance to the centroid or pro-
totype of the class d(X,λA). Quantitatively, prototypi-
cality can be defined as p(d(X,λA)) and is the underly-
ing rationale for Bayesian (as opposed to SVM) classi-
fiers.

For a search and annotation tool of handwritten his-
torical documents, separability and prototypicality need
to be optimised simultaneously. However, most classifier
methods optimise for one property, not both. The solu-
tion proposed in this study, is to combine classifiers in
a two-stage process. The classifier that optimises sepa-
rability is used in the first stage to divide the instances
and produce the most likely class C for an unlabelled
instance. The goal is to reduce the number of distractors
for the second stage. More specifically, the set of distrac-
tors of an instance classified as C will be a considerable
reduction of the set of all instances.

All instances labelled as C are then gathered for the
second stage, where all instances are re-ranked or re-
sorted with a secondary feature or method, one that op-
timises the ability to rank instances according to proto-
typicality. This ensures that if an instance is classified as
class C in the first stage, but is an atypical result (such
as the first few results in Figure 1, i.e., the speckles),
the instance will end up at a later position in the hit list
than other, more prototypical examples. Similar prob-
lems will occur if reject criteria need to be defined while
using the SVM [10], or when there are very few nega-
tive examples to train from (for example, in a machine
diagnostics problem)[14].

The results from the SVM experiment in the intro-
duction suggest that a larger number of distractors has a
negative effect on retrieval precision. It should be noted
that the experiments in this study are conducted in a lab-
oratory setting, using only human labelled instances. In
a real-world setting, the problem of distractors will even
be worse: the problem space is then heavily populated
with non-word images and other noise. For example, in
Monk, over all collections there are 22×103 classes, with
over 124×106 word images, including rejectable candi-
dates and noise.

3. Methods

Figure 3 shows the probability of finding the first cor-
rect hit in the ranks 0 to r of the hit lists generated in the
preliminary study from the introduction. It is apparent
that the probability of finding the first correct hit in the
first five ranks is roughly 0.4, when using the SVM dis-
criminant value for initial (tier 1) ranking. By reordering
the images using a different feature (‘img’ or ‘qp’), the
performance can be improved, such that the first correct
hit is found in the first five ranks 80% of the time. This
is hopeful, but this is not enough and the hit list still con-
tains counter intuitive results in the top ranks. Another
possible method for improving the tier-1 performance,
is using a multiclass SVM (for example, using decision
trees [13]). However, this approach is fairly complex and

Figure 3. Probability of finding the first hit in ranks 0
to r for raw and reranked SVM output (Nfolds = 7)

requires a large number of training instances for each of
the more than 104 classes. The Monk system is a con-
tinuous, ‘24/7’ training system: Labels are continuously
added or changed, and it would be too time consuming
and require human monitoring to train and retrain SVM
classifiers when the system is updated. Nearest-centroid
classifiers, on the contrary, can be easily updated with
new knowledge by just adding a new feature vector to
the set of training samples and averaging the samples
to get the centroid. Rather than constituting a simplis-
tic old-fashioned method, nearest-neighbour approaches
are at the core of important advances in computational
linguistics [5] and image retrieval [6, 7]. Therefore, in
this study, we will use a nearest-centroid classifier for
the classification stage, instead of SVMs.

The choice of word-based image retrieval instead of
character-based approaches is based, firstly, on the obser-
vation that in some historical document collections con-
tractions and loops are used to suggest characters in or-
der to speed up writing (Figure 4). This makes creating a
mapping between letter identity and character shape non-
trivial. Secondly, due to the large variety of scripts and
languages, most character-based approaches would need
to be fine-tuned for each script and language, leading to
long projects to process new collections (“each book its
PhD project”). Our goal is to collect huge number of
labelled word images first in order to develop character-
based classifiers at a later stage, when necessary.

As discussed in the introduction, classification is per-
formed by finding the class with the highest probability
given the data. Since nearest neighbour classifiers are
distance-based, the class with the highest probability is
the class with the smallest distance to the instance:

argmax
i

P (Ci|X) = argmin
i

d(Ci|X) (3)

Similarly, retrieval is performed by ranking all instances
based on their distance to a class-model.

Two features were experimentally chosen from a set
of features to be used in the experiments. The first,
dubbed “qp”, is a feature based on the biologically in-
spired features introduced in [15], and a simple feature

10

Figure 4. This variety of styles and shapes in a
realistic collection illustrates that ‘optical character
recognition’ of handwriting, by some form of sliding
window over a word, is only applicable to a small
subset. Many patterns are abbreviations, linguistic
contractions or suffer from deformed, ‘suggested’
characters. In the absence of character models,
the total-word image on the contrary provides a rich
and redundant pattern in all cases, and can be la-
belled easily by volunteers.

consisting of the normalised and scaled image. The di-
mensionality of the former feature is 4358, whereas the
scaled image has a size of 100×50, yielding a compa-
rable dimensionality of 5000. In both feature types, the
vector consists of probability values, adding up to one.

Two methods of retrieval will be compared: 1) direct
retrieval: ranking, in a single step, all instances from the
test set with the distance of the image to the centroid of
the target class, and 2) the two stage re-ranking method
as described in the previous section: do recognition on
all instances first, then for each class C rank its candi-
dates. The re-ranking method can be done in four ways
using the two features: recognition with either feature
and ranking with either feature. All four combinations
are used to study the effect of using a different, secondary
feature in the re-rank phase.

There are a number of measures to be used for com-
paring recognition and retrieval: (a) For recognition, we
define top-1 recognition accuracy as: The probability
that the nearest-centroid is of the correct class. For re-
trieval, the standard measures (b) precision and (c) recall
will be considered as well as (d) the average edit distance
in the top-7 of each hit list.

Accuracy (a) is defined as the percentage correctly
classified instances:

Accuracy =
Ncorrect

Ntotal

(4)

with Ncorrect is the total number of correctly classified
instances (in the top-1), and Ntotal is the total number of
instances.

Precision (b) is defined as the proportion of correctly
retrieved instances of class C in a fixed hit list H , with
target size n, and can be computed with

Precision in top-n =
Ncorrect

min(n, |H|)
(5)

where Ncorrect is the number of instances with the cor-
rect label in the top-n and |H| is the number of items in

the hit list1. The minimum of n and |H| is used because
the hit list can be smaller than the target size of n items.

The recall measure (c) is defined as the proportion of
instances of class C that can be found in the hit list; for-
mally, it can be defined as

Recall for class C =
Nobtained

Ntargets

(6)

where Nobtained is the number of instances retrieved
with class C, and Ntargets is the total number of in-
stances with class C in the given test set. The reported
precision and recall are accumulated over all classes as
proportions.

The concept of prototypicality cannot be seen in iso-
lation from the application context. More specifically,
users of a retrieval engine for historical handwritten
words will have an evaluation of the quality of a hit
list. In other words, P (Xj |C) must reflect an underlying
measure of similarity. In information retrieval, relevance
feedback is used to estimate user appreciation[11]. Rel-
evance feedback is outside the scope of this study, but to
estimate the user appreciation, we use average edit dis-
tance as the fourth performance measure. The assump-
tion is that if the ASCII-distance between the query and
the actual label of an instance is small, the hit list will
be intuitive, meaning that it reflects the users measure of
similarity well. The specific edit distance implemented
in this study is the Levenshtein distance[8].

The data set is drawn from the historical document
collection from the Dutch Queen’s Office (see also [15]),
or “Kabinet der Koningin” (KdK). The complete data set
has over 13×103 classes. However, in order to do a 7-
fold cross-validation experiment, only the 1404 classes
with seven or more human labelled word instances will
be considered. These classes will be divided into four
categories, based on the number of instances: 7 up to 35
instances, 35 up to 60 instances, 60 up to 120 instances
and 120 or more instances, similar to what has been done
in [15]. In total, there are more than 84×103 instances
used. The experiments are performed on a cluster of
eight Linux machines with 54 cores in total, connected
to a 1.6 petabyte storage, of which the Monk system cur-
rently uses roughly 0.5 petabyte.

For each line strip, a number of word candidates are
selected, based on the number and size of connected

1According to the Wikipedia article on precision and re-
call (http://en.wikipedia.org/wiki/Precision_and_
recall, last accessed 30 January 2012), this is also called “precision
at n” or “P@n”

11

Table 2. Top-1 accuracy (Nfolds = 7)
Feature Nexamples

7-35 35-60 60-120 120+

qp 0.62 0.93 0.92 0.94
img 0.62 0.86 0.87 0.93

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

7-35 35-60 60-120 120+

P
re
ci
si
o
n

Number of instances per class

avg. of reranking methods

direct-retrieval with qp

direct-retrieval with img

Figure 5. Precision performance in top-1, re-rank
vs direct (Nfolds = 7)

components. This means that the line is usually over-
segmented, which leads to overlap between images. To
avoid that multiple images that actually belong to the
same word instance end up in both the training and test
set, the assignment of an image to a fold is based on
the page number from which the image originated from:
fold ≡ page number (mod 7), where 7 is the number of
folds. This has the additional benefit that words that are
written consistently on one page, but inconsistently over
the entire collection are also assigned to the same fold.

4. Results

We look at two types of comparisons: between re-
rank methods (choice of features) and between average
re-rank performance and direct retrieval (i.e., without re-
ranking). Table 2 shows the top-1 recognition accuracy,
averaged over all seven folds for both features. The ‘qp’
feature outperforms the scaled image feature, especially
in the 35-60 and 60-120 categories. Furthermore, the
table shows that to accurately classify an instance, the
nearest-centroid classifier needs around 35 training in-
stances.

Figures 5, 6 and 7 compare the average of the re-rank
methods to the direct retrieval methods. The bars on the
averages show the minimum and maximum value of the
re-rank methods. These results show the gain in perfor-
mance when using the re-ranking methods instead of di-
rect retrieval. As was expected, reducing the number of
distractors has a positive impact on performance.

Table 3 and Table 4 show the precision (in the top-1)
and recall figures. In general, these results show that re-
ranking with a different feature can boost performance.
Using the qp feature as a classification feature and the
image feature for ranking works best for this data col-
lection, even getting a top-1 precision of 1.0 (i.e., 100%)
with a standard deviation of 0 in the 120+ category.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

7-35 35-60 60-120 120+

R
ec
al
l

Number of instances per class

avg. of reranking methods

direct-retrieval with qp

direct-retrieval with img

Figure 6. Recall performance, re-rank vs direct
(Nfolds = 7)

 0

 1

 2

 3

 4

 5

 6

 7

7-35 35-60 60-120 120+

E
d
it
 d
is
ta
n
ce

Number of instances per class

avg. of reranking methods

direct-retrieval with qp

direct-retrieval with img

Figure 7. Average edit distance in top-7, re-rank vs
direct (Nfolds = 7)

Overall, the results show that all methods perform
roughly the same when there are enough labelled sam-
ples (i.e., in the 120+ category).

5. Conclusions

In the design of a large scale retrieval engine for his-
torical handwritten manuscripts, it was observed that
classifier accuracy is not a good predictor of retrieval
precision. Very low precision performances occurred on
good classifiers when using a realistic number of distrac-
tors. In retrospect, the choice of using the signed dis-
tance dSVM from the margin for ranking was evidently
suboptimal, but it elucidated two separate functions to be
performed: 1) data reduction by optimal separation and
2) ranking instances in terms of their prototypicality with
respect to their class.

The re-ranking method has two main advantages: the
focus on both separability and prototypicality increases
the probability that the top of a hit list is more similar
to the user’s expectation than otherwise. Secondly, the
reduction of distractors lowers the number of noisy in-
stances in a hit list and is advantageous in terms of pro-
cessing demands. As the results presented in the previ-
ous section show, reducing the number of distractors in a
retrieval experiment improves precision and average edit

12

Table 3. Precision results (Nfolds = 7, σ ≤ 0.03)
Method Nexamples

7-35 35-60 60-120 120+

Direct, feat=img 0.42 0.89 0.93 0.97
Direct, feat=qp 0.46 0.92 0.94 0.97
Re-rank, img, img 0.76 0.97 0.98 0.99
Re-rank, img, qp 0.76 0.97 0.98 0.99
Re-rank, qp, qp 0.79 0.98 0.97 0.99
Re-rank, qp, img 0.82 0.99 0.99 1.00

Table 4. Recall results (Nfolds = 7, σ ≤ 0.03)
Method Nexamples

7-35 35-60 60-120 120+

Direct, feat=img 0.35 0.70 0.71 0.74
Direct, feat=qp 0.39 0.77 0.77 0.75
Re-rank, img, img 0.63 0.84 0.84 0.88
Re-rank, img, qp 0.63 0.84 0.85 0.89
Re-rank, qp, qp 0.67 0.90 0.89 0.90
Re-rank, qp, img 0.69 0.91 0.90 0.91

distance in the hit list, which we assume will increase the
user appreciation of hit lists.

It appeared to be beneficial for retrieval performance
to use different features in the stages. The optimal fea-
tures and processing order will depend on the material.
In the KdK data set, precision benefited the most by us-
ing a strong, robust feature for recognition first, and a
secondary feature with a strong image-based component
that works well on collections where words are written
fairly consistently. On data sets where the writing varies
a lot within a class, other features or classifier meth-
ods may prove to be more advantageous, including (k-
means) clustering to capture the different writing styles.

When a class has enough instances (i.e., the 120+ cat-
egory), choice of feature does not seem to have much
effect on retrieval performance. On the other hand, re-
ducing the number of distractors by a two-step approach
is still beneficial. In the bootstrapping phase of a re-
trieval system (i.e., the 7-35 category), the choice of fea-
ture does have a big impact. Even small performance
increases have large consequences in this stage, helping
the user to label new instances with little effort (Monk
presents hit lists in its web-based labelling interface).

The methods presented in this paper can use all kinds
of classifiers. Currently, nearest-centroid classifiers are
used due to the nature of ‘24/7’ learning, where new la-
bels are being added frequently. It would be cumbersome
to retrain classifiers such as SVMs every time a new la-
bel was added. The SVM has one benefit in the bootstrap
phase: its recognition accuracy is better than the perfor-
mance of a nearest neighbour classifier. However, the
7-35 category in this experiment has the most classes by
far, which would be very inconvenient for the training of
tens of thousands multi-class SVMs.

The Monk project has a large number of collections
with different script types: 15th and late 19th century
texts (cursive with a lot of abbreviations and variation),
Qumran scrolls (isolated characters), captain’s logs (cur-
sive) and even Thai[12] and Bangla[2] texts. The differ-
ent shapes and writing styles have different requirements

of the features; For each script, features will be selected
to optimise both separability and prototypicality.

References

[1] T. Artieres, S. Marukatat, and P. Gallinari. Online
handwritten shape recognition using segmental hidden
Markov models. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 29(2):205–217, 2007.

[2] T. Bhowmik, J. van Oosten, and L. Schomaker. Segmen-
tal K-means learning with mixture distribution for HMM
based handwriting recognition. Pattern Recognition and
Machine Intelligence, pages 432–439, 2011.

[3] B. Boser, I. Guyon, and V. Vapnik. A training algorithm
for optimal margin classifiers. In Proceedings of the
fifth annual workshop on Computational learning theory,
pages 144–152. ACM, 1992.

[4] Bunke, H. Recognition of cursive Roman handwriting:
past, present and future. In Document Analysis and
Recognition, 2003. Proceedings. Seventh International
Conference on, pages 448–459. IEEE, 2003.

[5] W. Daelemans and A. van den Bosch. Memory-based
language processing. Cambridge Univ Pr, 2005.

[6] G. Giacinto. A nearest-neighbor approach to relevance
feedback in content based image retrieval. In Proceed-
ings of the 6th ACM international conference on Image
and video retrieval, pages 456–463. ACM, 2007.

[7] H. Jégou, M. Douze, and C. Schmid. Improving bag-
of-features for large scale image search. International
Journal of Computer Vision, 87(3):316–336, 2010.

[8] V. Levenshtein. Binary codes capable of correcting dele-
tions, insertions, and reversals. In Soviet physics doklady,
volume 10, pages 707–710, 1966.

[9] U. Marti and H. Bunke. Handwritten sentence recogni-
tion. In Proceedings of the 15th International Conference
on Pattern Recognition, volume 3, pages 463–466. IEEE,
2000.

[10] H. Mouchère. Étude des mécanismes d’adaptation et
de rejet pour l’optimisation de classifieurs: Application
à la reconnaissance de l’écriture manuscrite en-ligne.
PhD thesis, l’Institut National des Sciences Appliquées
de Rennes, 2007.

[11] G. Salton and C. Buckley. Improving retrieval perfor-
mance by relevance feedback. Readings in information
retrieval, 24:5, 1997.

[12] O. Surinta, L. Schomaker, and M. Wiering. Handwrit-
ten character classification using the hotspot feature ex-
traction technique. In Proceedings of the First Interna-
tional Conference on Pattern Recognition Applications
and Methods, 2012, pages 261–264, 2012.

[13] F. Takahashi and S. Abe. Decision-tree-based multiclass
support vector machines. In Proceedings of the 9th Inter-
national Conference on Neural Information Processing,
volume 3, pages 1418–1422. IEEE, 2002.

[14] D. Tax. One-class classification. PhD thesis, Technische
Universiteit Delft, 2001.

[15] T. van der Zant, L. Schomaker, and K. Haak.
Handwritten-word spotting using biologically inspired
features. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(11):1945–1957, 2008.

[16] T. van der Zant, L. Schomaker, S. Zinger, and H. van
Schie. Where are the search engines for handwritten
documents? Interdisciplinary Science Reviews, 34,
2(3):224–235, 2009.

[17] V. Vapnik. Estimation of Dependencies Based on Empir-
ical Data. Springer-Verlag, New York, 1982.

13

