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Abstract—In this paper a vertical repositioning method
based on the center of gravity is investigated for handwriting
recognition systems and evaluated on databases containing
Arabic and French handwriting. Experiments show that verti-
cal distortion in images has a large impact on the performance
of HMM based handwriting recognition systems. Recently good
results were obtained with Bernoulli HMMs (BHMMs) using a
preprocessing with vertical repositioning of binarized images.
In order to isolate the effect of the preprocessing from the
BHMM model, experiments were conducted with Gaussian
HMMs and the LSTM-RNN tandem HMM approach with
relative improvements of 33% WER on the Arabic and up
to 62% on the French database.

Keywords-handwriting recognition; vertical distortion; cen-
ter of gravity; recurrent neural networks; Bernoulli HMMs

I. INTRODUCTION

According to the current state of the art [1], off-line

handwriting recognition systems is still a challenging task

with room for improvement. The choice of feature extraction

and classification techniques is a very important step in the

design of the recognizer. Hidden Markov Models (HMMs)

are successful in handwriting recognition systems [2]. In

particular, Bernoulli HMMs and Gaussian HMMs (GHMMs)

had recently reported very good results on Arabic handwrit-

ing recognition [3], [2], [4]. Results reported for BHMMs

were obtained using a novel feature extraction process in

which input images were binarized and afterwards a vertical

repositioning of a sliding window was applied. In contrast,

the results reported by GHMMs were obtained in combina-

tion with a special type of Recurrent Neural Networks: Long

Short Term Memory (LSTM); instead of using the vertical

repositioning. Therefore, the main objective of this paper is

to determine whether the good results given by the BHMMs

are due to the use of the Bernoulli mixtures, the binarization

of input images or the vertical repositioning of features.

In order to achieve such isolation, we compare three

models: BHMM, GHMM and GHMM/LSTM classifiers.

The same feature extraction processes was applied to each

classifier. We compare the effect of vertical repositioning, bi-

narization and both. Due to the nature of BHMMs employed

features for BHMMs are always binary.

This paper is organized as follows, Section 2 presents the

used repositioning method for preprocessing. The different

systems are described in Section 3. Finally, a comparison of

the results is given in Section 4 followed by the conclusions.

II. CENTER OF GRAVITY REPOSITIONING (COG)

Given a (binary) image normalized in height to H pixels,

we may think of a feature vector ot as its column at position

t or, more generally, as a concatenation of columns in a

window of W columns in width, centered at position t.
This generalization would be very helpful to better capture

the image context at each horizontal position of the image.

However, HMMs for image modeling are somewhat limited

when dealing with vertical image distortions, and this lim-

itation might be particularly strong in the case of feature

vectors extracted with significant context. To overcome this

limitation, we first compute the center of gravity (CoG)

of each extracted window. Afterwards we reposition each

window for each center to be to vertically aligned to the

center of gravity. A synthetic example of feature extraction

is shown in Figure 1 in which the the standard method (no

repositioning) is compared with the vertical repositioning

method.

Previous to the proposed feature extraction the images are

scaled to a fixed height while respecting the original aspect

ratio. Finally, if a binary input is expected, i.e. BHMMs,

then they are binarized using Otsu’s method.

III. BERNOULLI HMMS

A Bernoulli HMM (BHMM) is an HMM specifically

defined to deal with binary data [3], in which the emission

probability function in each state is modeled as a Bernoulli

mixture model as follows

bj(ot) =

K
∑

k=1

τjk

D
∏

d=1

potdjkd (1− pjkd)
1−otd , (1)
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o1 o2 o3 o4Repositioning
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Figure 1. Example of transformation of a 4 × 5 binary image into a se-
quence of four 15-dimensional binary feature vectors O = (o1,o2, o3,o4)
using a window of width 3. No repositioning (top) is compared with the
vertical repositioning (bottom).

where ot ∈ {0, 1}
D is the observation at t, and τjk and pjk

are, respectively, the prior and prototype of the k-th mixture

component in state j. As conventional Gaussian HMMs,

BHMMs can be trained using the MLE criterion by means of

the Baum-Welch algorithm [3]. However, γ-MMI is reported

to obtain better results in the literature [5], [6]. We will refer

to BHMMs trained using MMI as Discriminative BHMMs.

Given a collection of samples {(On, Sn)}
N
n=1

, the γ-MMI

criterion is defined as follows

Fγ-MMI(λ) =
1

γ

N
∑

n=1

log

(

[

exp(λT f(On, SN ))
]γ

∑

R

[

exp(λT f(On, R))
]γ

)

.

(2)

The optimization is performed by gradient descend using

the RPROP algorithm [7]. In order to avoid overfitting, a

L2 regularization term is added to the original criterion

Fγ-MMI(θ).

IV. LSTM TANDEM HMMS

Artificial neural networks (ANNs) in a tandem HMM

approach combine the discriminative parameter estimation

of the ANN with the sequence modeling ability of the HMM

[8]. Training the ANN requires each observation ot ∈ R
D

at time step t in the training data to be aligned to a character

label of its transcription. In order to obtain this labeling a

previously trained GHMM applied to the training data in

the forced alignment mode. Then the ANN is trained on the

labeled observations. Recurrent ANN architectures (RNNs)

provide a natural way to deal with contextual information

over time [9]. In the presented experiments we use bidi-

rectional Long-Short-Term-Memory (LSTM) RNNs, which

lead to significant improvements in handwriting recognition

[10]. The LSTM RNN is trained in a frame-based approach

with a softmax output layer using Backpropagation through

time (BPTT).

The trained LSTM RNN it is used to calculate a posterior

distribution over the character labels for each observation.

In a tandem HMM approach the posterior estimates are

considered as observations to train a new Gaussian HMM

(GHMM) in order to perform the sequence modeling. See

Figure 2 for an illustration.

Preprocessing

Baseline GHMM

LSTM RNN Training 

Tandem GHMM

Alignment

Posteriors

Features

Figure 2. The three steps of the LSTM Tandem HMM approach: An
alignment obtained by a baseline HMM is used to train the LSTM RNN.
Afterwards the posterior estimates are used as observations to train the
Tandem HMM.

V. EXPERIMENTAL RESULTS

Experiments were conducted on corpora with Arabic and

French handwriting using BHMMs, GHMMs and the LSTM

tandem HMM approach.

The RIMES database [11] consists of 5, 605 fictional

French letters by more than 1, 300 writers. Each word is

built from 82 symbols containing upper- and lowercase

characters, ligatures, typographical symbols, punctuation

marks and a white-space model. In our experiments we

used the training and validation corpus of the ICDAR

2011 competition for isolated word recognition. A closed

vocabulary containing 5, 340 words was used to estimate

a unigram language model with a perplexity of 45.2. The

validation corpus was used as test corpus in the ICDAR 2009

competition. The training corpus contains 51, 738 words and
the validation corpus contains 7, 464 words.

The IFN/ENIT database [2] contains 32, 492 Arabic hand-
written Tunisian town names by about 1, 000 writers with a

vocabulary size of 937. A whitespace character and position

dependent length modeling of the 28 base characters leads to

121 different character labels [12]. The database is divided

in five disjoint sets, where in the presented experiments the

sets a-d were used for training and set e for testing. This

setup results in 335 singletons.

A. LSTM Tandem HMM

The images of the RIMES database were scaled to a fixed

height of 40 pixels keeping the aspect ratio. Afterwards the

vertical repositioning method was applied and the features

were reduced by PCA to 35 components using a sliding

window of size 14. The baseline GHMM was composed of

ten states with five separate Gaussian mixture models. With

the alignment provided by the GHMM the LSTM RNN was

trained with two hidden layers containing 100 and 200 nodes
respectively resulting in about 785k weights. A separate

validation set containing 20% of the training data was used
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Table I
COMPARISON OF GHMMS ON THE RIMES DATABASE WITH AND

WITHOUT THE VERTICAL REPOSITIONING.

repositioning no yes

WER[%] CER[%] WER[%] CER[%]

GHMM 36.6 24.4 23.5 15.5
+ LSTM 25.8 17.2 9.7 5.2

Table II
COMPARISON OF GHMMS ON THE RIMES DATABASE BEFORE AND

AFTER BINARIZING THE FEATURES.

binarization no yes

WER[%] CER[%] WER[%] CER[%]

GHMM 23.5 15.5 24.7 13.8
+ LSTM 9.7 5.2 10.6 5.6

to detect convergence of the RNN training. The posterior

estimates of the LSTM RNN were reduced by PCA to 72
components and used to train a tandem GHMM with the

same topology as the baseline GHMM.

Table I compares the results of GHMMs with and without

vertical repositioning method on the validation data of

the RIMES database. Vertical repositioning improves the

GHMM system absolutely by 12.2% in terms of word

error rate (WER) and 9.8% in terms of character error

rate (CER). With the LSTM tandem GHMM an absolute

improvement of 8.3%WER and 7.2% CER can be observed.

The relative improvement of the LSTM tandem GHMM

compared to the baseline GHMM decreases from 29.5%
WER to 25.8% WER. In order to make a clear comparison

to BHMMs, additional experiments were conducted using

the same features after binarizing them with the Otsu’s

method. The results of the experiments with and without the

additional binarization step are shown in Table II. Both the

GHMM and the LSTM tandem GHMM show an increase

of the WER and the CER.

On IFN/ENIT a scaling to 30 pixels height was performed

keeping the aspect. Then, the vertical repositioning method

was applied and the features were reduced by PCA to 35
components using a sliding window of size six. A 12-
state baseline GHMM With six separate Gaussian mixture

Models was trained on the features and used to generate

the alignment for the RNN training. The LSTM RNN again

consisted of two hidden layers with 100 and 200 nodes

respectively resulting in about 800k weights. Convergence

was detected on a separate validation set containing 20% of

the training data. A tandem GHMM with the same topology

as the baseline GHMM was trained on the 121 posterior

estimates of the LSTM RNN, which were reduced by PCA

to 64 components.

Table III shows the results of the systems with and

without vertical repositioning. The preprocessing method

Table III
COMPARISON OF GHMMS ON THE IFN/ENIT DATABASE WITH AND

WITHOUT THE VERTICAL REPOSITIONING.

repositioning no yes

WER[%] CER[%] WER[%] CER[%]

GHMM 13.1 10.6 6.7 5.2
+ LSTM 7.2 5.6 4.8 3.7

Table IV
COMPARISON OF GHMMS ON THE IFN/ENIT DATABASE BEFORE AND

AFTER BINARIZING THE FEATURES.

binarization no yes

WER[%] CER[%] WER[%] CER[%]

GHMM 6.7 5.2 6.4 4.6
+ LSTM 4.8 3.7 5.0 3.9

improves the baseline GHMM by 6.4%WER and 5.4% CER

absolutely. With the LSTM tandem approach an absolute

improvement of 2.6%WER and 1.9% CER can be observed.

The relative improvement of the LSTM tandem HMM

compared to the baseline GHMM decreases from 45% WER

to 28.8% WER. As on the RIMES database, additional

experiments were conducted using the same features after

binarizing them with the Otsu’s method. Table IV compares

the results with and without the additional binarization step.

Only a small absolute improvement of 0.2% WER and 0.6%
CER can be observed in the baseline GHMM. In the LSTM

tandem GHMM the WER and CER increase through the

binarization step.

B. BHMM

For the BHMM classifier all images were first scaled to a

given height H , and then binarized using the Otsu’s method.

The CoG repositioning is then applied to the binarized

images using a sliding window of a given width W . As

a result, original images are transformed into sequences of

(H ×W )-dimensional binary feature vectors.

Regarding to the model topology we used BHMM with

a left to right topology without skip transitions and with a

fixed number of states per character. MLE parameter esti-

mation was carried out using a typical incremental strategy.

That is, for K = 1 mixture components per state, BHMMs

were initialized by first segmenting the training set with a

“neutral” model analogous to that in [13], and then using

the resulting segments to perform a Viterbi initialization.

For K > 1, the BHMMs were initialized by splitting the

mixture components of the models trained withK/2 mixture

components per state. In each case, we performed 4 EM

iterations after the initialization.

We tried different values for the sliding window width,

W ∈ {1, 3, 5, 7, 9}, different heights H ∈ {20, 30, 35, 40},
number of states per character Q ∈ {4, 6, 8, 10} and

several number of mixture components per state K ∈
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Table V
COMPARISON OF BHMMS ON THE RIMES DATABASE WITH AND

WITHOUT THE VERTICAL REPOSITIONING.

repositioning no yes

WER[%] CER[%] WER[%] CER[%]

BHMM 26.5 17.0 21.3 12.9
+ MMI - - 16.9 9.8

Table VI
COMPARISON OF BHMMS ON THE IFN/ENIT DATABASE WITH AND

WITHOUT THE VERTICAL REPOSITIONING.

repositioning no yes

WER[%] CER[%] WER[%] CER[%]

BHMM 13.7 10.3 6.2 5.2
+ MMI - - 6.2 5.2

{1, 2, 4, 8, 16, 32, 64}. In both corpora the parameter tuning

was carried out over a special train-validation partition. In

order to tune the number of states Q, window width W ,

height H and number of mixture components per state K ,

we carried out experiment over a special train-validation

sets. On the IFN/ENIT database we performed a cross-

validation over the sets a,b,c and d. In RIMES the train

set were randomly split into train (≈ 80%) and validation

(≈ 20%). In IFN/ENIT the best results were obtained using

H = 30, W = 9, Q = 6 and K = 32, while in the case of

RIMES the best configuration was H = 40, W = 9, Q = 8
and K = 64.

With the previous parameters we carried out experiments

with and without vertical repositioning on the standard

partitions of both corpus. The results for IFN/ENIT and

RIMES are shown respectively in the top row in Table VI

and Table V. As expected, repositioning clearly outperforms

the use of a sliding window without repositioning. We

are obtaining an absolute improvement of 7% WER on

IFN/ENIT and an absolute improvement of 5% WER on

RIMES.

A last experiment was carried out in order to try to

improve the previous results with repositioning by applying

the γ-MMI criterion. We initialized the training process

by transforming the best MLE models from previous ex-

periments into equivalent Log-Linear HMMs (LLHMMs)

for binary data. Then we used RPROP for optimizing

the training criterion. And finally, the resulting LLHMMs

were transformed again into equivalent BHMMs classifiers.

Despite the best generative results are obtained with K = 64
and K = 32, some works reported [14] that the best

classifier obtained using MMI training requires less mixture

components than its generative counterpart. For this reason,

and for the required computational cost by the discriminative

training, we reduce the number of mixture components to

K = 26 and checked that similar results were obtained to

those obtained increasing the value of K . A comparison of

the conventional BHMMs with discriminatively trained BH-

MMs is shown in the second column in Table VI and Table

V. For the IFN/ENIT database no improvement was obtained

using discriminative training. In fact, without regularization

we quickly observed overfitting over the validation set.

However, on the RIMES database we obtained an absolute

improvement of 4% WER absolutely.

VI. CONCLUSIONS

We examined a method to overcome the limitations of

HMMs to deal with vertical image distortion and evaluated

it for different HMM systems on databases with Arabic

and French handwriting. In order to remove the vertical

distortion the CoG is calculated for a window of the image

data. Afterwards the window is repositioned to be vertically

aligned to its CoG. For BHMMs a final binarization step is

required to make the data suitable for the Bernoulli mixture

model used as emission probability function.

Our experiments show that vertical repositioning is able to

augment the information given to an HMM, which can not

be discovered by the HMM itself due to its inability to deal

with vertical distortions. The same is true for the LSTM

RNN because they are also trained on a one-dimensional

sequence of fixed size pixel columns, such that the pixels

of each row are always associated with the same unit in

the input layer. Multidimensional RNNs exist [15], [16],

but without further heuristics they enlarge the number of

time steps in a magnitude that offline training with BPTT

becomes infeasible for large network architectures.

The relative improvement of the LSTM tandem GHMM

compared to the baseline GHMM remains roughly the same

on the RIMES database, while it decreases by more than

16% WER on the IFN/ENIT database which in general

shows a better recognition performance. However, the final

binarization step required for BHMMs leads to no improve-

ment in GHMM models as shown in the experiments. The

binarization step discards valuable information for GHMM

and LSTM RNN. Finally, BHMMs show a superior perfor-

mance compared to the GHMM approach. In combination

with discriminative training their performance on the RIMES

database could be improved by 4.4% WER absolutely.
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