Evaluating the Probability of Identification in the Forensic Sciences

Sargur N. Srihari University at Buffalo, The State University of New York USA

ICFHR Plenary, Bari, Italy September 2012

Plan of Discussion

- Forensic Identification
- Probability of Identification
- Computational Intractability
- Distance Methods
- Distance and Rarity
- Application to Handwriting

The CSI Effect

- CSI: Popular Television
 - On CBS for 12 years
- Perceptions:
 - Forensics uses high technology
 - Little subjectivity
 - No false positives
- Consequences
 - Jury expectations high
 - Glamorous Field

Controversies

- Innocence Project
 - Several exonerations based on DNA
- Cameron Todd Willingham
 - Possibly Innocent of Arson, Executed 2004
 - New Yorker Sept 7, 2009
- San Jose police withheld uncertainties in fingerprint cases
 - Mercury News Mar 7, 2009

2004 Madrid train bombings On the morning of March 11, 2004

- Series of coordinated bombings against commuter train system (4 trains)
- Killing 191 people and injuring 2,000 others

IWCF 2010

Srihari

The curious case of Brandon Mayfield

- Spanish National Police (SNP) recovered a latent fingerprint (LFP 17)
 - Partial on a plastic bag of detonators in van used by perpetrators
- FBI IAFIS: LFP 17 has potential match with Mayfield, a lawyer in Oregon
 - Prints from 1984 when arrested for burglary as a teenager
 - Confirmed by 3 FBI examiners + an outside consultant
- Mayfield had never been to Spain
 - Passport at the time had expired
 - Converted to Islam, married an Egyptian
 - Represented man in child custody who turned out to be a jihadist
- On May 6, 2004, FBI arrested Mayfield
- Meanwhile, SNP announced that LFP 17 was sourced to Ounahne Daoud
 - Algerian with criminal record
 - Spanish residency
 - Terrorist links
- FBI concluded that earlier individualization was in error
 - Released 3 weeks after arrest
 - \$2 million for mistake
 - apologized to Mayfield

Latent and Known Prints in Mayfield Case

• LFP 17

15 level 2 similarities

Mayfield fingerprint

Daoud fingerprint

Srihari

Need for Probabilistic Analysis

- Mayfield highlights need for quantifying uncertainty in latent print analysis
 - Rather than binary decision: individualization or not
- Two types of uncertainty
 - Rarity (how unusual is the evidence)
 - Similarity (between evidence and known)

Forensic Modalities

- Biological Evidence
 - DNA, Blood, Hair
- Impression Evidence
 - Latent Prints,
 Handwriting, Shoe
 Prints

VOU JEUNG LEE A 20 C VOUBLOT, PIL MACHANN ANNOL IN 1979	Service Tory	2/1/	234 10
Enter Bank of Aming		18	2,545,00
Light Stand The Hindred's	n-Insuffic	HENT FUN) ≠ ñ *** Da
501002 \$14 7855 7001	Man	4.	lan .
C1220004950 0651157693*	5234	1000	0-24

- Trace Evidence
 - Pollen, Fiber, Paint,
 Glass

National Academy of Sciences

Committee on identifying the needs of the forensic science community (2007-09)

- 1. HARRY T. EDWARDS, (Co-chair), Judge, U.S. Court of Appeals, District of Columbia Circuit
- 2. CONSTANTINE GATSONIS, (Co-chair), Director, Center for Statistical Sciences, Brown University
- 3. MARGARET A. BERGER, Suzanne J. and Norman Miles Professor of Law, Brooklyn Law School
- 4. JOE S. CECIL, Project Director, Program on Scientific and Technical Evidence, Federal Judicial Center
- 5. M. BONNER DENTON, Professor of Chemistry, University of Arizona
- 6. MARCELLA F. FIERRO, Medical Examiner of Virginia
- 7. KAREN KAFADAR, Rudy Professor of Statistics and Physics, Indiana University
- 8. PETE M. MARONE, Director, Virginia Department of Forensic Science
- 9. GEOFFREY S. MEARNS, Dean, Cleveland-Marshall College of Law, Cleveland State University
- 10. RANDALL S. MURCH, Director, Research, Virginia Polytechnic Institute and State University

11. CHANNING ROBERTSON, Bowes Professor, Dean of Faculty, Dept Chemical Engg, Stanford University

12. MARVIN E. SCHECHTER, Attorney

13. ROBERT SHALER, Professor, Biochemistry, The Pennsylvania State University

- 14. JAY A. SIEGEL, Professor, Forensic Program, Indiana University-Purdue University
- 15. SARGUR N. SRIHARI, SUNY Distinguished Professor, Dept Computer Scien & Engg, University at Buffalo
- 16. SHELDON M. WIEDERHORN (NAE), Senior Fellow, National Institute of Standards and Technology
- 17. ROSS E. ZUMWALT, Chief Medical Examiner, State of New Mexico

NAS Committee Report

Released March 2009 National Academies Press Committee at NAS, Woods Hole, MA

NAS Recommendations (13) (Four Relevant to Computational Forensics)

1. New federal entity, the National Institute of Forensic Sciences (NIFS) to focus on:

peer-reviewed research support to forensic practices development of new technologies standardized terminology and reporting

 Studies on validity of forensic methods development and establishment of quantifiable measures of reliability and accuracy

NAS Committee Recommendations

5. Research on human observer bias and human error in forensic examinations
12. Baseline standards for fingerprints to map, record, and recognize features improvement and characterization of accuracy of algorithms

The Identification Task

- Impression Evidence: materials with characteristics of impressed objects
 - Footwear impressions

- latent fingerprints

Biological Evidence
 – DNA

- Blood type

Forensic Opinion and Individualization

- Courts allow opinion on individualization
 - Evidence attributed to a one individual and no other
 - Three possible opinions for evidence
 - Individualization
 - » No other individual on earth
 - Inconclusive
 - Exclusion
 - » Definitely not this individual
- Need for characterizing degree of uncertainty
 - Degree of uniqueness: rarity (1 in a billion)
 - Probability of identification

DNA Evidence

Genome: sequence of 3x10⁹ base-pairs (nucleotides A,C,G,T) Represents full set of chromosomes

Actual Electron photomicrograph

Single Chromosome: ~10⁸ base-pairs

Genome has 46 chromosomes (22 are repeated plus XX and XY)

Large portions of DNA have no survival function (98.5%) called "junk DNA" and have variations useful for identification Combined DNA Identification System (CODIS) identifies 13 markers CSF1PO,D3S1358,D7S820,.. TH01 is a location on short arm of chromosome 11:

short tandem repeats (STR) of same base pair AATG Variant forms (alleles) different for different individuals

DNA Profile Probability

Allele Frequency of single locus for 200 individuals

Individual alleles are assumed Independent. Probability of profile obtained by multiplying individual probabilities

DNA profile of 13 loci: Average match probability (PRC) is 0.1 per locus, 10⁻¹³ for a profile

I	ONA Profile	Allele frequency from database				Genotype frequency for locus	
Locus	Alleles	Times allele observed	Size of database	Frequency		formula	number
CSF1P	10	109	422	p =	0.25	2pq	0.16
0	11	134	432	q =	0.31		
TROV	8	220	432	n -	0.52	p^2	0.28
IPUA	8	223		р-	0.55		
THO1	6	102	128	p =	0.24	2pq	0.07
	7	64	420	q =	0.15		
vWA	16	01	120	n -	0.21	m ²	0.05
	16	51	420	p =	0.21	p	
			Pro	ofile free	quency =		0.00014

Probability of one in 10 trillion of another individual with this profile 17

Handwriting Evidence in Forensic QD

Task is to determine whether two writing samples originated from the same individual

We have to take into account both similarity of Known and Questioned as well as the rarity

Handwriting Features (QDE)

R = Height Rela-	L = Shape of Loop	A = Shape of	C = Height of	B = Baseline of h	S = Shape of t
tionship of t to h	of <i>h</i>	Arch of <i>h</i>	Cross on t staff		_
$r^0 = t$ shorter than h	$l^0 = retraced$	a^0 = rounded	$c^0 = upper half of$	$b^0 = $ slanting up-	$s^0 = $ tented
		arch	staff	ward	
$r^1 = t$ even with h	$l^1 = $ curved right side	$a^1 = pointed$	$c^1 = $ lower half of	b^1 = slanting	$s^1 = single stroke$
	and straight left side	_	staff	downward	_
$r^2 = t$ taller than h	$l^2 = $ curved left side	a^2 =no set pat-	$c^2 = above staff$	$b^2 =$ baseline even	$s^2 = \text{looped}$
	and straight right side	tern			
$r^3 = $ no set pattern	l^3 = both sides		$c^3 = \text{no fixed pat-}$	$b^3 = $ no set pattern	$s^3 = closed$
	curved		tern		
	$l^4 = no$ fixed pattern				s^4 = mixture of
					shapes

Defines a multinomial distribution

Probabilistic Approach to Forensic Identification

- Object (Known): o
- Evidence (Questioned): *e*
- Models:
 - $-M_o$: Object and evidence are from the same source
 - $-M_1$: Object and evidence are from different sources
- Model priors: $p(M_0)$ and $p(M_1)$ $\sum_i p(M_i) = 1$
- Need to determine the posteriors $p(M_i|o,e)$
- Referred to as the probability of identification

Probability of Identification

Likelihood Ratio: $LR(o,e) = \frac{p(o,e \mid M_0)}{p(o,e \mid M_1)}$

Prior Odds: $O_{prior} = \frac{p(M_0)}{p(M_1)}$

Posterior Odds: $O_{posterior} = O_{prior} \times LR(o, e)$

Probability of Identification under equal priors:

$$p(M_0 \mid o, e) = \frac{LR(o, e)}{1 + LR(o, e)} = \frac{\exp(LLR(o, e))}{1 + \exp(LLR(o, e))}$$

Values of Probability

Log-likelihood Ratio:
$$LLR(o,e) = \frac{\ln p(o,e \mid M_0)}{\ln p(o,e \mid M_1)}$$

$$p(M_0 \mid o,e) = \frac{\exp(LLR(o,e))}{1 + \exp(LLR(o,e))} = \frac{1}{1 + \exp(-LLR(o,e))}$$

$$= sigmoid(-LLR(o,e))$$

Feature Space View

Feature 1

- Consider joint distribution of $p(o,e|M_i)$
- When M₀ holds distribution is defined over pairs from same person
- *M*₁ will consider pairs from different persons

Intractability of Computing LR from joint distributions

Likelihood Ratio: $LR_J(o,e) = \frac{p(o,e \mid M_0)}{p(o,e \mid M_1)}$

If *o* and *e* have *d* features each,
 each feature has *K* discrete values,
 no. of parameters needed is 2K^{2d}

the	th	th
-----	----	----

ththth

R = Height Rela-	L = Shape of Loop	A = Shape of	C = Height of	B = Baseline of h	S = Shape of t
tionship of <i>t</i> to <i>h</i>	of <i>h</i>	Arch of h	Cross on t staff		
$r^0 = t$ shorter than h	$l^0 = retraced$	a^0 = rounded	$c^0 = upper half of$	$b^0 = \text{slanting up}$	$s^0 = $ tented
		arch	staff	ward	
$r^1 = t$ even with h	$l^1 = $ curved right side	$a^1 = pointed$	$c^1 = $ lower half of	b^1 = slanting	$s^1 = \text{single stroke}$
	and straight left side		staff	downward	_
$r^2 = t$ taller than h	$l^2 = $ curved left side	a^2 =no set pat-	$c^2 = above staff$	$b^2 = baseline even$	$s^2 = \text{looped}$
	and straight right side	tern			
$r^3 = no \text{ set pattern}$	l^3 = both sides		$c^3 = \text{no fixed pat-}$	$b^3 = \text{no set pattern}$	$s^3 = closed$
	curved		tern		
	$l^4 = no$ fixed pattern				s^4 = mixture of
	_				shapes

No of letter pairs is 325. If we assume 200 legal ones, need 10⁶ parameters 100 million letter pairs to be manually truthed, features/hw may change

From 2-d Feature Space to 1-d Distance Space

Manhattan Distances

Intra-class (9): 2,3,3, 3,3,4, 5,5,6

Distance or Similarity Method

Likelihood Ratio: $LR_D(o,e) = \frac{p(d(o,e) | M_0)}{p(d(o,e) | M_1)}$

 Maps two multivariate distributions of 2n variables each into two univariate ones

• Natural extension is to use vector distance $LR_{VD}(o,e) = \frac{p(d(o,e) | M_0)}{p(d(o,e) | M_1)}$

Still there is information loss

Lindley's Result

Each source (individual) is Normally distributed

Sources (individual means) are normally distributed

$$LR = \frac{\tau}{\sqrt{2}\sigma} \exp\left\{-\frac{(o-e)^2}{4\sigma^2}\right\} \exp\left\{\frac{(m-\mu)^2}{2\tau^2}\right\}$$

where m = (o + e)/2 is the mean of o and e.

Product of Difference Term and Rarity Term

Generalization of Lindley's Result

• Generalize to mutivariate

$$LR_{DR} = P(d(o,e) | M_0) * \frac{1}{P(m(o,e))}$$

-d(o,e) is vector difference and m(o,e) is mean

- Other data types
 - 1.Binary
 - Difference is 0,1 or -1
 - Mean is 0 if bits are different, 1 otherwise
 - 2.Multinomial
 - Difference of categorical values
 - 3.Graph
 - Difference of features of matching nodes/edges
 - Mean of feature vector of matching nodes/edges

We now have three LR methods

- 1. Based on Joint Distributions $LR_J(o,e) = \frac{p(o,e \mid M_0)}{p(o,e \mid M_1)}$
- 2. Based on Distance Distributions $LR_{D}(o,e) = \frac{p(d(o,e) | M_{0})}{p(d(o,e) | M_{1})}$
- 3. Based on Distance and Rarity Distributions

$$LR_{DR}(o,e) = P(d(o,e) | M_0) * \frac{1}{P(m(o,e))}$$
²⁹

Comparison Metrics

- 1. Probability of misclassification
 - Determine error based on whether LLR is positive or negative
- 2. Computation time
- 3. Scalability
 - Tractability with increasing number of variables

Error Rates of LR methods with Gaussian Data

Distribution of object is:

Univariate

5-variate

Error/Speed with Multinomial Data ("th")

Joint Distribution: assumed independence due to intractability.

Three distance methods:

L: Lin O: overall frequency G: Goodall

Three LR methods with six data types

Computation of *LR*_{DR}

- Need two distributions (difference and mean) each with *n* variables
 - No. of parameters is $2K^n$ (where K=no. of values)
 - As opposed to $2K^{2n}$ with LR_J
 - We are dealing with two *n*-dimensional distributions rather than two 2*n* dimensional distributions
- Still exponential with *n*: scalability is an issue
- Solution is to use PGMs of feature variables
 - Bayesian networks
 - Markov Networks

Parameter Learning For BNs

Difficult to specify causality of handwriting features

Markov Structure Learning

Evaluation of Rarity using MNs

MRF	Construction	Time of structure	Average	Probability of 'th'	Probability of 'th'
index	method	learning (sec)	log-loss	in Fig. 3(f)	in Fig. 3(g)
MRF_1	Manual	n/a	6.428	$1.59 \cdot 10^{-2}$	$16 \cdot 10^{-6}$
MRF_2	Manual	n/a	6.464	$1.82 \cdot 10^{-2}$	$6 \cdot 10^{-6}$
MRF_3	Mod. Chow-Liu	2	6.426	$1.7 \cdot 10^{-2}$	$5 \cdot 10^{-6}$
MRF_4	Greedy w. L_1 -reg	53	6.326	$1.94 \cdot 10^{-2}$	$25 \cdot 10^{-6}$
MRF_5	FGA	7	6.328	$1.8 \cdot 10^{-2}$	$21 \cdot 10^{-6}$

Rare and Common Style Conditional nPRCs

Rare Styles : Looped or tented 't', loop of 'h' with both sides curved Author: 1479b Author:1025c Author: 1409c nPRC: 1.66 x 10⁻⁵ nPRC 4 17 x 10⁻⁸ nPRC: 1.23 x 10⁻⁶ Common Styles: Single stroke 't', retraced 'h', pointed arch of 'h', baseline of 'h' slanting down, 't' taller, cross of 't' below Author: 40b Author: 130b Author: 1007c Author: 685a nPRC: 0.76

PRC = 0.0043 for the dataset. Population size n=100

Rarity Metrics: PRC in database of size n

Summary

- 1. Forensic Identification facing court scrutiny
 - Expressing Uncertainty is necessary
 - More uncertainty in impression evidence than DNA
- 2. LR based on Joint distributions is exact but is intractable
 - Distance based LR are a rough approximation
- 3. Distance and rarity methods are more accurate
 - But still intractable
- 4. PGMs provide a solution
 - Markov network structure learning is needed

Credits

- LR Computation methods: Yi Tang
- Markov Structure Learning: Dmitry Kovalenko
- Rarity Evaluation: Chang Su

• Funding from:

National Institute of Justice

Word Cloud of IEEE Spectrum Paper December 2010

